Anomaly Detection Model of Network Dataflow Based on an Improved Grey Wolf Algorithm and CNN

异常检测 计算机科学 数据流 净流量 服务拒绝攻击 网络安全 恒虚警率 数据挖掘 人工智能 异常(物理) 卷积神经网络 计算机网络 物理 互联网 并行计算 万维网 凝聚态物理
作者
Liting Wang,Qinghua Chen,Chao Song
出处
期刊:Electronics [MDPI AG]
卷期号:12 (18): 3787-3787
标识
DOI:10.3390/electronics12183787
摘要

With the popularization of the network and the expansion of its application scope, the problem of abnormal network traffic caused by network attacks, malicious software, traffic peaks, or network device failures is becoming increasingly prominent. This problem not only leads to a decline in network performance and service quality but also may pose a serious threat to network security. This paper proposes a hybrid data processing model based on deep learning for network anomaly detection to improve anomaly detection performance. First, the Grey Wolf optimization algorithm is improved to select high-quality data features, which are then converted to RGB images and input into an anomaly detection model. An anomaly detection model of network dataflow based on a convolutional neural network is designed to recognize network anomalies, including DoS (Denial of Service), R2L (Remote to Local), U2R (User to Root), and Probe (Probing). To verify the effectiveness of the improved Grey Wolf algorithm and the anomaly detection model, we conducted experiments on the KDD99 and UNSW-NB15 datasets. The proposed method achieves an average detection rate of 0.986, which is much higher than all the counterparts. Experimental results show that the accuracy and the detection rates of our method were improved, while the false alarm rate has been reduced, proving the effectiveness of our approach in network anomaly classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HopeStar完成签到,获得积分10
1秒前
树叶有专攻完成签到,获得积分10
1秒前
1秒前
田様应助Mia采纳,获得20
1秒前
所所应助吃点红糖馒头采纳,获得10
1秒前
今后应助PSCs采纳,获得10
1秒前
2秒前
duguqiubai4发布了新的文献求助10
2秒前
独特的沛凝完成签到,获得积分10
4秒前
思源应助淇淇怪怪采纳,获得10
4秒前
领导范儿应助徐慕源采纳,获得10
4秒前
听粥完成签到,获得积分10
5秒前
高高迎蓉完成签到,获得积分10
5秒前
豆花完成签到,获得积分10
5秒前
SYLH应助风趣的无剑采纳,获得10
5秒前
悲伤水凝胶完成签到,获得积分10
5秒前
鲸鱼完成签到,获得积分10
7秒前
huangqinxue完成签到,获得积分10
7秒前
8秒前
8秒前
Tina完成签到,获得积分10
8秒前
电催化皮皮完成签到,获得积分10
8秒前
大模型应助阿蒙采纳,获得10
9秒前
duguqiubai4完成签到,获得积分10
9秒前
10秒前
meta完成签到,获得积分10
10秒前
大饼完成签到,获得积分10
11秒前
爆米花应助WJM采纳,获得10
11秒前
xiexuqin完成签到,获得积分10
11秒前
11秒前
silentJeremy发布了新的文献求助200
12秒前
JonyiCheng完成签到,获得积分10
12秒前
科研通AI5应助典雅又夏采纳,获得10
13秒前
风趣的无剑完成签到,获得积分10
13秒前
13秒前
anpucle发布了新的文献求助10
13秒前
跳不起来的大神完成签到 ,获得积分10
13秒前
科研乐色完成签到,获得积分10
13秒前
Drew完成签到,获得积分10
15秒前
挤爆沙丁鱼完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678