亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Anomaly Detection Model of Network Dataflow Based on an Improved Grey Wolf Algorithm and CNN

异常检测 计算机科学 数据流 净流量 服务拒绝攻击 网络安全 恒虚警率 数据挖掘 人工智能 异常(物理) 卷积神经网络 计算机网络 物理 互联网 并行计算 万维网 凝聚态物理
作者
Liting Wang,Qinghua Chen,Chao Song
出处
期刊:Electronics [MDPI AG]
卷期号:12 (18): 3787-3787
标识
DOI:10.3390/electronics12183787
摘要

With the popularization of the network and the expansion of its application scope, the problem of abnormal network traffic caused by network attacks, malicious software, traffic peaks, or network device failures is becoming increasingly prominent. This problem not only leads to a decline in network performance and service quality but also may pose a serious threat to network security. This paper proposes a hybrid data processing model based on deep learning for network anomaly detection to improve anomaly detection performance. First, the Grey Wolf optimization algorithm is improved to select high-quality data features, which are then converted to RGB images and input into an anomaly detection model. An anomaly detection model of network dataflow based on a convolutional neural network is designed to recognize network anomalies, including DoS (Denial of Service), R2L (Remote to Local), U2R (User to Root), and Probe (Probing). To verify the effectiveness of the improved Grey Wolf algorithm and the anomaly detection model, we conducted experiments on the KDD99 and UNSW-NB15 datasets. The proposed method achieves an average detection rate of 0.986, which is much higher than all the counterparts. Experimental results show that the accuracy and the detection rates of our method were improved, while the false alarm rate has been reduced, proving the effectiveness of our approach in network anomaly classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
13秒前
14秒前
15秒前
薄衫发布了新的文献求助10
19秒前
20秒前
23秒前
36秒前
薄衫完成签到,获得积分10
40秒前
48秒前
55秒前
qwe发布了新的文献求助10
58秒前
59秒前
1分钟前
燕鹏发布了新的文献求助10
1分钟前
1分钟前
等待的剑身完成签到,获得积分10
1分钟前
1分钟前
1分钟前
qwe完成签到,获得积分20
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
欧阳发布了新的文献求助10
2分钟前
uko完成签到 ,获得积分10
2分钟前
王子娇完成签到 ,获得积分10
2分钟前
2分钟前
缓慢傥发布了新的文献求助30
2分钟前
完美世界应助芷毓_Tian采纳,获得10
3分钟前
3分钟前
maodeshu应助曾天祥采纳,获得10
3分钟前
芷毓_Tian发布了新的文献求助10
3分钟前
3分钟前
鱼块完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
斯文的苡完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335274
求助须知:如何正确求助?哪些是违规求助? 2964488
关于积分的说明 8613967
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447329
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974