Anomaly Detection Model of Network Dataflow Based on an Improved Grey Wolf Algorithm and CNN

异常检测 计算机科学 数据流 净流量 服务拒绝攻击 网络安全 恒虚警率 数据挖掘 人工智能 异常(物理) 卷积神经网络 计算机网络 凝聚态物理 互联网 物理 万维网 并行计算
作者
Liting Wang,Qinghua Chen,Chao Song
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (18): 3787-3787
标识
DOI:10.3390/electronics12183787
摘要

With the popularization of the network and the expansion of its application scope, the problem of abnormal network traffic caused by network attacks, malicious software, traffic peaks, or network device failures is becoming increasingly prominent. This problem not only leads to a decline in network performance and service quality but also may pose a serious threat to network security. This paper proposes a hybrid data processing model based on deep learning for network anomaly detection to improve anomaly detection performance. First, the Grey Wolf optimization algorithm is improved to select high-quality data features, which are then converted to RGB images and input into an anomaly detection model. An anomaly detection model of network dataflow based on a convolutional neural network is designed to recognize network anomalies, including DoS (Denial of Service), R2L (Remote to Local), U2R (User to Root), and Probe (Probing). To verify the effectiveness of the improved Grey Wolf algorithm and the anomaly detection model, we conducted experiments on the KDD99 and UNSW-NB15 datasets. The proposed method achieves an average detection rate of 0.986, which is much higher than all the counterparts. Experimental results show that the accuracy and the detection rates of our method were improved, while the false alarm rate has been reduced, proving the effectiveness of our approach in network anomaly classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助feiying88采纳,获得10
1秒前
2秒前
WAN发布了新的文献求助10
2秒前
我是老大应助BSDL采纳,获得10
3秒前
无情的友容完成签到 ,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科目三应助科研通管家采纳,获得30
4秒前
所所应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
露露应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
GT完成签到,获得积分10
5秒前
BAEKHYUNLUCKY发布了新的文献求助10
5秒前
6秒前
直觉应助sopha采纳,获得10
8秒前
9秒前
桐桐应助仔wang采纳,获得10
10秒前
10秒前
10秒前
12秒前
13秒前
13秒前
jjjj完成签到,获得积分10
13秒前
14秒前
JamesPei应助独特乘云采纳,获得10
14秒前
14秒前
14秒前
梅坤发布了新的文献求助10
15秒前
ZzzZzH发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992928
求助须知:如何正确求助?哪些是违规求助? 3533703
关于积分的说明 11263585
捐赠科研通 3273517
什么是DOI,文献DOI怎么找? 1806067
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629