生物
基因组
计算生物学
鉴定(生物学)
转录因子
遗传学
抄写(语言学)
基因
植物
语言学
哲学
作者
Hao Chen,Shuwen Zhang,Kang Du,Xiangyang Kang
标识
DOI:10.1016/j.plaphy.2023.108101
摘要
The CCT [CONSTANS (CO), CO-like, and TIMING OF CAB EXPRESSION1 (TOC1)] gene family is involved in photoperiodic flowering and adaptation to different environments. In this study, 39 CCT family genes from the poplar genome were identified and characterized, including 18 COL, 7 PRR, and 14 CMF TFs. Phylogenetics analysis showed that the PtrCCT gene family could be classified into five classes (Classes I–V) that have close relationships with Arabidopsis thaliana. Eight pairs of PtrCCTs had collinear relationships through interchromosomal synteny analysis in poplar, suggesting segmental duplication played a vital role in the expansion of the poplar CCT gene family. Besides, synteny analyses of the CCT members among poplar and different species provided more clues for PtrCCT gene family evolution. Cis-acting elements in the promoters of PtrCCTs predicted their involvement in light responses, hormone responses, biotic/abiotic stress responses, and plant growth and development. Eight members of the PpnCCT gene family were differentially expressed in the apical buds and leaves of triploid poplar compared to diploids. We then focused on PpnCCT39 upregulated in triploid poplars and showed that PpnCCT39 was localized in the nucleus, chloroplast, and cytoplasm and could interact with CLPP1 in the chloroplast. Overexpression of PpnCCT39 in poplar increased chlorophyll contents and enhanced photosynthetic rate. This study provided comprehensive information for the CCT gene family and set up a basis for its function identification in poplar.
科研通智能强力驱动
Strongly Powered by AbleSci AI