纳米片
阳极
材料科学
纳米复合材料
纳米棒
纳米颗粒
纳米技术
锂(药物)
碳纳米管
复合数
化学工程
氧化物
储能
电极
复合材料
化学
内分泌学
物理化学
工程类
功率(物理)
物理
冶金
医学
量子力学
作者
Haichang Zhong,Wenlong Huang,Yukun Wei,Xin Yang,Chunhai Jiang,Hui Liu,Wenxian Zhang,Chu Liang,Leyang Dai,Xijun Xu
出处
期刊:Batteries
[MDPI AG]
日期:2023-08-02
卷期号:9 (8): 403-403
被引量:3
标识
DOI:10.3390/batteries9080403
摘要
Ferroferric oxide (Fe3O4) is regarded to be a promising high-capacity anode material for LIBs. However, the capacity attenuates fast and the rate performance is poor due to the dramatic pulverization and sluggish charge transfer properties. To solve these problems, a simple in situ encapsulation and composite method was successfully developed to construct carbon nanotube/nanorod/nanosheet-supported Fe3O4 nanoparticles. Owing to the hierarchical architecture design, the novel structure Fe3O4@C nanocomposites effectively enhance the charge transfer, alleviate pulverization, avoid the agglomeration of Fe3O4 nanoparticles, and also provide superior kinetics toward lithium storage, thereby showing significantly improved reversibility and rate performance. The carbon nanotube/nanorod supported core-shell structure Fe3O4@C nanocomposite displays outstanding high rate capability and stable cycling performance (reversible capability of 1006, 552 and 423 mA h g−1 at 0.2, 0.5 and 1 A g−1 after running 100, 300 and 500 cycles, respectively).
科研通智能强力驱动
Strongly Powered by AbleSci AI