材料科学
弹性体
阳极
离子电导率
化学工程
电解质
相间
金属锂
锂(药物)
复合材料
纳米技术
电极
化学
物理化学
医学
生物
工程类
遗传学
内分泌学
作者
Po Hu,Wei Chen,Yang Wang,Tao Chen,Xiaohu Qian,Wenqi Li,Jiaoyang Chen,Jiajun Fu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-08-03
卷期号:17 (16): 16239-16251
被引量:18
标识
DOI:10.1021/acsnano.3c06171
摘要
The heterogeneity and continuous cracking of the static solid electrolyte interphase (SEI) are one of the most critical barriers that largely limit the cycle life of lithium (Li) metal batteries. Herein, we report a fatigue-free dynamic supramolecular ion-conductive elastomeric interphase (DSIEI) for a highly efficient and dendrite-free lithium metal anode. The soft phase poly(propylene glycol) backbone with loosely Li+-O coordinating interaction was responsible for fast ion transport. Simultaneously, the supramolecular quadruple hydrogen bonds (H-bonds) in the hard phases endow the elastomeric interphase with mechanical enhancement, while gradient H-bonds can dissipate strain energy via the sequential bonding cleavage. Such a design affords superior mechanical robustness, high ionic conductivity, gradient energy dissipation, and high Li+ transference number. Besides, anion enrichment in DSIEI assists in situ construction of a lithium fluoride-rich inner layer upon cycling. The resultant biomimetic bilayer structure enables the symmetric cells with superior cyclability of over 600 h at a high current density of 10 mA cm-2. Moreover, the DSIEI allows stable operation of the full cells under constrained conditions of limited lithium excess, a high-loading LiNi0.8Co0.1Mn0.1O2 cathode, and a low negative/positive capacity (N/P) ratio. This work presents a powerful strategy for deigning artificial SEI and achieving high-energy-density Li metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI