A life-threatening bleeding prediction model for immune thrombocytopenia based on personalized machine learning: a nationwide prospective cohort study

医学 免疫性血小板减少症 前瞻性队列研究 大出血 队列研究 内科学 血小板 心房颤动
作者
Zhuo‐Yu An,Yejun Wu,Yu Hou,Heng Mei,Weixia Nong,Wenqian Li,Hu Zhou,Ru Feng,Jianping Shen,Jun Peng,Hai Zhou,Yi Liu,Yongping Song,Linhua Yang,Meiyun Fang,Jianyong Li,Yunfeng Cheng,Peng Liu,Yajing Xu,Zhao Wang
出处
期刊:Science Bulletin [Elsevier BV]
卷期号:68 (18): 2106-2114 被引量:11
标识
DOI:10.1016/j.scib.2023.08.001
摘要

Rare but critical bleeding events in primary immune thrombocytopenia (ITP) present life-threatening complications in patients with ITP, which severely affect their prognosis, quality of life, and treatment decisions. Although several studies have investigated the risk factors related to critical bleeding in ITP, large sample size data, consistent definitions, large-scale multicenter findings, and prediction models for critical bleeding events in patients with ITP are unavailable. For the first time, in this study, we applied the newly proposed critical ITP bleeding criteria by the International Society on Thrombosis and Hemostasis for large sample size data and developed the first machine learning (ML)-based online application for predict critical ITP bleeding. In this research, we developed and externally tested an ML-based model for determining the risk of critical bleeding events in patients with ITP using large multicenter data across China. Retrospective data from 8 medical centers across the country were obtained for model development and prospectively tested in 39 medical centers across the country over a year. This system exhibited good predictive capabilities for training, validation, and test datasets. This convenient web-based tool based on a novel algorithm can rapidly identify the bleeding risk profile of patients with ITP and facilitate clinical decision-making and reduce the occurrence of adversities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
1秒前
Dean应助科研通管家采纳,获得50
1秒前
机灵柚子应助科研通管家采纳,获得20
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
Dean应助科研通管家采纳,获得50
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
wilson完成签到,获得积分10
4秒前
完美世界应助Wang采纳,获得10
5秒前
我是老大应助Wang采纳,获得10
5秒前
万能图书馆应助ccccttvv采纳,获得10
5秒前
拼搏半梦发布了新的文献求助10
7秒前
若水三千发布了新的文献求助20
7秒前
大力尔云完成签到 ,获得积分10
7秒前
ZZZ完成签到,获得积分10
7秒前
ty完成签到,获得积分10
8秒前
8秒前
浮游应助Tch159357采纳,获得10
9秒前
共享精神应助LU采纳,获得10
9秒前
jingwen完成签到,获得积分10
11秒前
13秒前
zho发布了新的文献求助30
13秒前
14秒前
浮游应助zoey采纳,获得10
14秒前
成就嘉人发布了新的文献求助10
14秒前
太阳下山发布了新的文献求助10
15秒前
思源应助牛呵呵采纳,获得10
17秒前
CipherSage应助corner采纳,获得10
17秒前
18秒前
123发布了新的文献求助10
18秒前
今后应助激动的项链采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061503
求助须知:如何正确求助?哪些是违规求助? 4285518
关于积分的说明 13354798
捐赠科研通 4103375
什么是DOI,文献DOI怎么找? 2246637
邀请新用户注册赠送积分活动 1252319
关于科研通互助平台的介绍 1183218