清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI

医学 接收机工作特性 前列腺癌 放射科 曼惠特尼U检验 前列腺切除术 前列腺 精确检验 磁共振成像 活检 癌症 外科 内科学
作者
Charlie Alexander Hamm,Georg Lukas Baumgärtner,Felix Bießmann,Nick Lasse Beetz,Alexander Hartenstein,Lynn Jeanette Savic,Konrad Froböse,Franziska Dräger,Simon Schallenberg,Madhuri Rudolph,Alexander Baur,Bernd Hamm,Matthias Haas,Sebastian Hofbauer,Hannes Cash,Tobias Penzkofer
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (4) 被引量:50
标识
DOI:10.1148/radiol.222276
摘要

Background Clinically significant prostate cancer (PCa) diagnosis at MRI requires accurate and efficient radiologic interpretation. Although artificial intelligence may assist in this task, lack of transparency has limited clinical translation. Purpose To develop an explainable artificial intelligence (XAI) model for clinically significant PCa diagnosis at biparametric MRI using Prostate Imaging Reporting and Data System (PI-RADS) features for classification justification. Materials and Methods This retrospective study included consecutive patients with histopathologic analysis-proven prostatic lesions who underwent biparametric MRI and biopsy between January 2012 and December 2017. After image annotation by two radiologists, a deep learning model was trained to detect the index lesion; classify PCa, clinically significant PCa (Gleason score ≥ 7), and benign lesions (eg, prostatitis); and justify classifications using PI-RADS features. Lesion- and patient-based performance were assessed using fivefold cross validation and areas under the receiver operating characteristic curve. Clinical feasibility was tested in a multireader study and by using the external PROSTATEx data set. Statistical evaluation of the multireader study included Mann-Whitney U and exact Fisher-Yates test. Results Overall, 1224 men (median age, 67 years; IQR, 62-73 years) had 3260 prostatic lesions (372 lesions with Gleason score of 6; 743 lesions with Gleason score of ≥ 7; 2145 benign lesions). XAI reliably detected clinically significant PCa in internal (area under the receiver operating characteristic curve, 0.89) and external test sets (area under the receiver operating characteristic curve, 0.87) with a sensitivity of 93% (95% CI: 87, 98) and an average of one false-positive finding per patient. Accuracy of the visual and textual explanations of XAI classifications was 80% (1080 of 1352), confirmed by experts. XAI-assisted readings improved the confidence (4.1 vs 3.4 on a five-point Likert scale; P = .007) of nonexperts in assessing PI-RADS 3 lesions, reducing reading time by 58 seconds (P = .009). Conclusion The explainable AI model reliably detected and classified clinically significant prostate cancer and improved the confidence and reading time of nonexperts while providing visual and textual explanations using well-established imaging features. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chapiro in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦向日葵完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
16秒前
yellowonion完成签到 ,获得积分10
20秒前
cheng完成签到 ,获得积分10
21秒前
喜悦的香之完成签到 ,获得积分10
25秒前
小昕思完成签到 ,获得积分10
32秒前
随心所欲完成签到 ,获得积分10
35秒前
星辰大海应助科研通管家采纳,获得10
36秒前
所所应助科研通管家采纳,获得10
36秒前
心想事成完成签到 ,获得积分10
43秒前
如意2023完成签到 ,获得积分10
43秒前
mochalv123完成签到 ,获得积分10
48秒前
空儒完成签到 ,获得积分10
48秒前
sll完成签到 ,获得积分10
53秒前
坦率的从波完成签到 ,获得积分10
1分钟前
yan完成签到,获得积分10
1分钟前
白柏233完成签到,获得积分10
1分钟前
hz_sz完成签到,获得积分10
1分钟前
氟锑酸完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
困困困完成签到 ,获得积分10
1分钟前
ZhaoZitong发布了新的文献求助10
1分钟前
mumu发布了新的文献求助10
1分钟前
1分钟前
alanbike完成签到,获得积分10
1分钟前
unicornmed发布了新的文献求助10
1分钟前
mumu完成签到,获得积分10
1分钟前
沈呆呆完成签到,获得积分10
2分钟前
赵李锋完成签到,获得积分10
2分钟前
Shandongdaxiu完成签到 ,获得积分10
2分钟前
启程完成签到 ,获得积分10
2分钟前
千帆破浪完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助50
2分钟前
飞云完成签到 ,获得积分10
3分钟前
LOST完成签到 ,获得积分10
3分钟前
huiluowork完成签到 ,获得积分10
3分钟前
康康完成签到 ,获得积分10
3分钟前
小果完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612797
求助须知:如何正确求助?哪些是违规求助? 4017872
关于积分的说明 12436835
捐赠科研通 3700139
什么是DOI,文献DOI怎么找? 2040580
邀请新用户注册赠送积分活动 1073377
科研通“疑难数据库(出版商)”最低求助积分说明 957018