Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI

医学 接收机工作特性 前列腺癌 放射科 曼惠特尼U检验 前列腺切除术 前列腺 精确检验 磁共振成像 活检 癌症 外科 内科学
作者
Charlie Alexander Hamm,Georg L. Baumgärtner,Felix Bießmann,Nick Lasse Beetz,Alexander Hartenstein,Lynn Jeanette Savic,Konrad Froböse,Franziska Dräger,Simon Schallenberg,Madhuri Rudolph,Alexander Baur,Bernd Hamm,Matthias Haas,Sebastian Hofbauer,Hannes Cash,Tobias Penzkofer
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (4) 被引量:27
标识
DOI:10.1148/radiol.222276
摘要

Background Clinically significant prostate cancer (PCa) diagnosis at MRI requires accurate and efficient radiologic interpretation. Although artificial intelligence may assist in this task, lack of transparency has limited clinical translation. Purpose To develop an explainable artificial intelligence (XAI) model for clinically significant PCa diagnosis at biparametric MRI using Prostate Imaging Reporting and Data System (PI-RADS) features for classification justification. Materials and Methods This retrospective study included consecutive patients with histopathologic analysis-proven prostatic lesions who underwent biparametric MRI and biopsy between January 2012 and December 2017. After image annotation by two radiologists, a deep learning model was trained to detect the index lesion; classify PCa, clinically significant PCa (Gleason score ≥ 7), and benign lesions (eg, prostatitis); and justify classifications using PI-RADS features. Lesion- and patient-based performance were assessed using fivefold cross validation and areas under the receiver operating characteristic curve. Clinical feasibility was tested in a multireader study and by using the external PROSTATEx data set. Statistical evaluation of the multireader study included Mann-Whitney U and exact Fisher-Yates test. Results Overall, 1224 men (median age, 67 years; IQR, 62-73 years) had 3260 prostatic lesions (372 lesions with Gleason score of 6; 743 lesions with Gleason score of ≥ 7; 2145 benign lesions). XAI reliably detected clinically significant PCa in internal (area under the receiver operating characteristic curve, 0.89) and external test sets (area under the receiver operating characteristic curve, 0.87) with a sensitivity of 93% (95% CI: 87, 98) and an average of one false-positive finding per patient. Accuracy of the visual and textual explanations of XAI classifications was 80% (1080 of 1352), confirmed by experts. XAI-assisted readings improved the confidence (4.1 vs 3.4 on a five-point Likert scale; P = .007) of nonexperts in assessing PI-RADS 3 lesions, reducing reading time by 58 seconds (P = .009). Conclusion The explainable AI model reliably detected and classified clinically significant prostate cancer and improved the confidence and reading time of nonexperts while providing visual and textual explanations using well-established imaging features. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chapiro in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光刺眼完成签到,获得积分10
1秒前
1秒前
上官若男应助胡强采纳,获得10
2秒前
桐桐应助霹雳Young采纳,获得10
5秒前
6秒前
11应助wing采纳,获得10
7秒前
9秒前
10秒前
光天画戟的把完成签到,获得积分10
10秒前
干冷安发布了新的文献求助10
10秒前
汉堡包应助了了采纳,获得10
10秒前
carbon-dots发布了新的文献求助10
12秒前
科目三应助日不落采纳,获得10
13秒前
14秒前
14秒前
qing_he应助麻了采纳,获得10
15秒前
17秒前
Zorn发布了新的文献求助10
18秒前
18秒前
爆炸boom完成签到 ,获得积分10
19秒前
19秒前
20秒前
NexusExplorer应助无或采纳,获得10
20秒前
20秒前
纯2025留下了新的社区评论
21秒前
机灵笑萍发布了新的文献求助10
22秒前
笑笑丶不爱笑完成签到,获得积分10
22秒前
23秒前
一啊鸭发布了新的文献求助10
23秒前
23秒前
25秒前
了了发布了新的文献求助10
27秒前
会笑的蜗牛完成签到 ,获得积分10
28秒前
28秒前
Crane发布了新的文献求助10
30秒前
干冷安完成签到,获得积分10
31秒前
zj-3333333发布了新的文献求助30
31秒前
33秒前
leonieliu完成签到,获得积分10
34秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138986
求助须知:如何正确求助?哪些是违规求助? 2789907
关于积分的说明 7793124
捐赠科研通 2446296
什么是DOI,文献DOI怎么找? 1301017
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096