Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI

医学 接收机工作特性 前列腺癌 放射科 曼惠特尼U检验 前列腺切除术 前列腺 精确检验 磁共振成像 活检 癌症 外科 内科学
作者
Charlie Alexander Hamm,Georg Lukas Baumgärtner,Felix Bießmann,Nick Lasse Beetz,Alexander Hartenstein,Lynn Jeanette Savic,Konrad Froböse,Franziska Dräger,Simon Schallenberg,Madhuri Rudolph,Alexander Baur,Bernd Hamm,Matthias Haas,Sebastian Hofbauer,Hannes Cash,Tobias Penzkofer
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (4) 被引量:50
标识
DOI:10.1148/radiol.222276
摘要

Background Clinically significant prostate cancer (PCa) diagnosis at MRI requires accurate and efficient radiologic interpretation. Although artificial intelligence may assist in this task, lack of transparency has limited clinical translation. Purpose To develop an explainable artificial intelligence (XAI) model for clinically significant PCa diagnosis at biparametric MRI using Prostate Imaging Reporting and Data System (PI-RADS) features for classification justification. Materials and Methods This retrospective study included consecutive patients with histopathologic analysis-proven prostatic lesions who underwent biparametric MRI and biopsy between January 2012 and December 2017. After image annotation by two radiologists, a deep learning model was trained to detect the index lesion; classify PCa, clinically significant PCa (Gleason score ≥ 7), and benign lesions (eg, prostatitis); and justify classifications using PI-RADS features. Lesion- and patient-based performance were assessed using fivefold cross validation and areas under the receiver operating characteristic curve. Clinical feasibility was tested in a multireader study and by using the external PROSTATEx data set. Statistical evaluation of the multireader study included Mann-Whitney U and exact Fisher-Yates test. Results Overall, 1224 men (median age, 67 years; IQR, 62-73 years) had 3260 prostatic lesions (372 lesions with Gleason score of 6; 743 lesions with Gleason score of ≥ 7; 2145 benign lesions). XAI reliably detected clinically significant PCa in internal (area under the receiver operating characteristic curve, 0.89) and external test sets (area under the receiver operating characteristic curve, 0.87) with a sensitivity of 93% (95% CI: 87, 98) and an average of one false-positive finding per patient. Accuracy of the visual and textual explanations of XAI classifications was 80% (1080 of 1352), confirmed by experts. XAI-assisted readings improved the confidence (4.1 vs 3.4 on a five-point Likert scale; P = .007) of nonexperts in assessing PI-RADS 3 lesions, reducing reading time by 58 seconds (P = .009). Conclusion The explainable AI model reliably detected and classified clinically significant prostate cancer and improved the confidence and reading time of nonexperts while providing visual and textual explanations using well-established imaging features. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chapiro in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助Hshen采纳,获得10
刚刚
淡定蜗牛发布了新的文献求助10
刚刚
木木夕云完成签到,获得积分10
1秒前
浮游应助liuyuxin采纳,获得10
1秒前
在水一方应助doubin采纳,获得10
1秒前
科目三应助南非的猫采纳,获得10
1秒前
2秒前
hanyu完成签到,获得积分10
2秒前
2秒前
悦耳的友灵完成签到,获得积分10
2秒前
汉堡包应助墨翟采纳,获得10
2秒前
2秒前
2秒前
ghtsmile完成签到 ,获得积分10
3秒前
小猴完成签到,获得积分10
4秒前
allenise完成签到,获得积分10
4秒前
勾勾完成签到 ,获得积分10
4秒前
5秒前
搜集达人应助阿米巴ing采纳,获得10
5秒前
科研通AI6应助Ricewind采纳,获得10
5秒前
zzz完成签到,获得积分10
6秒前
陈住气发布了新的文献求助10
7秒前
万能图书馆应助Merge采纳,获得10
7秒前
7秒前
橘子发布了新的文献求助10
8秒前
8秒前
当当完成签到 ,获得积分10
8秒前
紫菜完成签到,获得积分10
10秒前
来岁昭昭发布了新的文献求助10
10秒前
谨慎的天空完成签到,获得积分20
10秒前
mikasa发布了新的文献求助10
11秒前
11秒前
超级的水完成签到,获得积分10
11秒前
Flllllll发布了新的文献求助20
11秒前
无语的乌鸦完成签到,获得积分10
11秒前
11秒前
Ricewind完成签到,获得积分10
11秒前
合适的猎豹完成签到,获得积分10
11秒前
ysy完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393801
求助须知:如何正确求助?哪些是违规求助? 4515106
关于积分的说明 14052738
捐赠科研通 4426288
什么是DOI,文献DOI怎么找? 2431263
邀请新用户注册赠送积分活动 1423445
关于科研通互助平台的介绍 1402505