Multiprocessor task scheduling using multi-objective hybrid genetic Algorithm in Fog–cloud computing

计算机科学 调度(生产过程) 作业车间调度 能源消耗 分布式计算 公平份额计划 多处理 单调速率调度 动态优先级调度 遗传算法 两级调度 多处理器调度 数学优化 地铁列车时刻表 并行计算 工程类 数学 机器学习 操作系统 电气工程
作者
Gaurav Agarwal,Sachi Gupta,Rakesh Ahuja,Atul Kumar
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:272: 110563-110563 被引量:18
标识
DOI:10.1016/j.knosys.2023.110563
摘要

Multiprocessor task scheduling is an operation of processing more than two tasks simultaneously in the system. The Fog–cloud multiprocessor computing structures are the categories of exchanged collateral structures with great demand from its initiation. Like other networking systems, the existing fog–cloud system based on multiprocessor systems faces some challenges. Due to the availability of excess clients and various services, scheduling and energy consumption issues are challenging. The existing problems must be resolved with proper planning to reduce makespan and energy consumption. To obtain this, an optimal scheduling approach is required. The proposed approach presents a novel methodology called Hybrid Genetic Algorithm and Energy Conscious Scheduling for better scheduling tasks over the processors. Here Genetic Algorithm and Energy conscious scheduling model are integrated. When only a Genetic Algorithm is chosen for the task scheduling approach, it becomes computationally expensive. Energy consumption becomes a huge challenge as it does not cope with complexity, making it extremely difficult to schedule appropriate tasks. When choosing the proposed hybrid Genetic algorithm, these issues can be overcome by considering optimal solutions with minimized makespan and consumed energy. A Genetic Algorithm is used to generate three primary chromosomes using priority approaches. The allocated resources are optimized through the Energy Conscious Scheduling model, and the proposed method is implemented using MATLAB. The existing methods, including genetic algorithm, particle swarm optimization, gravitational search algorithm, ant colony optimization and round robin models, are compared with the proposed method, proven comparatively better than existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼丸发布了新的文献求助10
刚刚
zth发布了新的文献求助10
刚刚
1秒前
1秒前
含糊的小松鼠完成签到 ,获得积分10
2秒前
维生素发布了新的文献求助10
4秒前
4秒前
YYYhl完成签到,获得积分10
5秒前
Owen应助乐观的雪曼采纳,获得10
6秒前
Gauss应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
ZHANGZHANG应助科研通管家采纳,获得10
7秒前
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
9秒前
ling22发布了新的文献求助30
9秒前
uniphoton完成签到,获得积分10
11秒前
华仔应助ttqql采纳,获得10
11秒前
陈甸甸发布了新的文献求助10
12秒前
希望天下0贩的0应助wanxin采纳,获得20
13秒前
olivia发布了新的文献求助10
13秒前
13679981516完成签到,获得积分10
13秒前
殷勤的紫槐发布了新的文献求助200
13秒前
吳某人完成签到,获得积分10
13秒前
乐观的雪曼完成签到,获得积分10
13秒前
14秒前
15秒前
Orange应助YTT采纳,获得30
15秒前
16秒前
17秒前
17秒前
Tina完成签到,获得积分10
17秒前
17秒前
wanxin完成签到,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441735
求助须知:如何正确求助?哪些是违规求助? 3038293
关于积分的说明 8971453
捐赠科研通 2726658
什么是DOI,文献DOI怎么找? 1495529
科研通“疑难数据库(出版商)”最低求助积分说明 691221
邀请新用户注册赠送积分活动 688269