Patchwork++: Fast and Robust Ground Segmentation Solving Partial Under-Segmentation Using 3D Point Cloud

分割 计算机科学 点云 尺度空间分割 地平面 人工智能 计算机视觉 激光雷达 基于分割的对象分类 基本事实 图像分割 噪音(视频) 图-地面 区域增长 模式识别(心理学) 遥感 地质学 感知 图像(数学) 电信 生物 天线(收音机) 神经科学
作者
Seung Jae Lee,Hyungtae Lim,Hyun Myung
标识
DOI:10.1109/iros47612.2022.9981561
摘要

In the field of 3D perception using 3D LiDAR sensors, ground segmentation is an essential task for various purposes, such as traversable area detection and object recognition. Under these circumstances, several ground segmentation methods have been proposed. However, some limitations are still encountered. First, some ground segmentation methods require fine-tuning of parameters depending on the surroundings, which is excessively laborious and time-consuming. Moreover, even if the parameters are well adjusted, a partial under-segmentation problem can still emerge, which implies ground segmentation failures in some regions. Finally, ground segmentation methods typically fail to estimate an appropriate ground plane when the ground is above another structure, such as a retaining wall. To address these problems, we propose a robust ground segmentation method called Patchwork++, an extension of Patchwork. Patchwork++ exploits adaptive ground likelihood estimation (A-GLE) to calculate appropriate parameters adaptively based on the previous ground segmentation results. Moreover, temporal ground revert (TGR) alleviates a partial under-segmentation problem by using the temporary ground property. Also, region-wise vertical plane fitting (R-VPF) is introduced to segment the ground plane properly even if the ground is elevated with different layers. Finally, we present reflected noise removal (RNR) to eliminate virtual noise points efficiently based on the 3D LiDAR reflection model. We demonstrate the qualitative and quantitative evaluations using a SemanticKITTI dataset. Our code is available at https://github.com/url-kaist/patchwork-plusplus
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rainove完成签到,获得积分10
1秒前
SciGPT应助Bleser采纳,获得10
2秒前
3秒前
Mado完成签到,获得积分10
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
维奈克拉应助科研通管家采纳,获得20
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
侯总应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
酷炫的凤妖完成签到 ,获得积分10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得30
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
元谷雪应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
成就凡双应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
storm完成签到,获得积分0
6秒前
共享精神应助fuzh采纳,获得10
8秒前
柴胡发布了新的文献求助10
9秒前
9秒前
ccm应助junxu采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589907
求助须知:如何正确求助?哪些是违规求助? 4674376
关于积分的说明 14793616
捐赠科研通 4629217
什么是DOI,文献DOI怎么找? 2532436
邀请新用户注册赠送积分活动 1501101
关于科研通互助平台的介绍 1468527