FedBKD: Heterogenous Federated Learning via Bidirectional Knowledge Distillation for Modulation Classification in IoT-Edge System

计算机科学 云计算 蒸馏 上传 自编码 边缘计算 GSM演进的增强数据速率 机器学习 过程(计算) 边缘设备 人工智能 任务(项目管理) 分布式计算 互联网 深度学习 数据挖掘 万维网 经济 有机化学 化学 管理 操作系统
作者
Peihan Qi,Xiaoyu Zhou,Yuanlei Ding,Zhengyu Zhang,Shilian Zheng,Zan Li
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 189-204 被引量:27
标识
DOI:10.1109/jstsp.2022.3224597
摘要

Benefit from the rapid evolution of artificial intelligence and wireless communication technology, diverse Internet of Things (IoT) devices with edge computing ability have widely penetrated every aspect of daily human life. However, the deviations of private datasets and the heterogeneity of local models caused by the difference in device composition and application scenarios have hampering the aggregation of global recognition model in modulation classification task, thus constraining the classification performance of intelligent IoT-edge devices severely. To address this problem, we propose a heterogenous Federated learning framework based on Bidirectional Knowledge Distillation (FedBKD) for IoT system, which integrates knowledge distillation into the local model upload (client-to-cloud) and global model download (cloud-to-client) steps of federated learning. The client-to-cloud distillation is regarded as a process of multi-teacher knowledge distillation and the global network is regarded as a student network that unifies the heterogeneous knowledge from multiple local teacher networks. A public dataset is generated by conditional variational autoencoder (CVAE) and stored in the cloud server for supporting the obtaining of heterogeneous knowledge without sharing the private data of IoT devices. The cloud-to-client distillation is single-teacher-multiple-students process, which distills the knowledge from the single global model back to multiple heterogeneous local networks and partial knowledge distillation is used in this process. We implement our FedBKD method in the modulation classification task and the simulation results have proven the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
天天快乐应助周周采纳,获得10
2秒前
Ava应助Patty采纳,获得10
2秒前
3秒前
3秒前
复杂白风发布了新的文献求助10
3秒前
4秒前
大个应助卷毛采纳,获得10
4秒前
4秒前
别摆烂了完成签到,获得积分10
5秒前
科研通AI5应助学术草履虫采纳,获得10
6秒前
huang关注了科研通微信公众号
6秒前
爆米花应助nishishui采纳,获得10
6秒前
argo发布了新的文献求助10
7秒前
Ava应助外向的康乃馨采纳,获得10
8秒前
小韦同学发布了新的文献求助10
9秒前
林林发布了新的文献求助10
10秒前
迷人素发布了新的文献求助10
10秒前
丘比特应助红色蒲公英采纳,获得10
10秒前
yeah完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
C·麦塔芬完成签到,获得积分10
13秒前
13秒前
酷波er应助来活采纳,获得10
13秒前
康小姐应助111采纳,获得50
14秒前
chengmin发布了新的文献求助10
15秒前
16秒前
英俊的铭应助bofu采纳,获得10
16秒前
独特的哈密瓜数据线完成签到 ,获得积分20
17秒前
huang发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
脑洞疼应助自在采纳,获得10
20秒前
Paper发发发完成签到,获得积分10
21秒前
大个应助那种采纳,获得10
21秒前
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475760
求助须知:如何正确求助?哪些是违规求助? 3067545
关于积分的说明 9104513
捐赠科研通 2759073
什么是DOI,文献DOI怎么找? 1513938
邀请新用户注册赠送积分活动 699895
科研通“疑难数据库(出版商)”最低求助积分说明 699204