Construction of 3D flowers-like O-doped g-C3N4-[N-doped Nb2O5/C] heterostructure with direct S-scheme charge transport and highly improved visible-light-driven photocatalytic efficiency

光催化 异质结 罗丹明B 材料科学 可见光谱 载流子 光降解 兴奋剂 光电子学 光化学 化学 催化作用 生物化学
作者
Fahim A. Qaraah,Samah A. Mahyoub,Abdo Hezam,Amjad Qaraah,Q.A. Drmosh,Guangli Xiu
出处
期刊:Chinese Journal of Catalysis [Elsevier BV]
卷期号:43 (10): 2637-2651 被引量:37
标识
DOI:10.1016/s1872-2067(21)64038-x
摘要

Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental, medical, and energy applications. Recently, the construction of a step-scheme heterostructure system (hereafter called the S-scheme) has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability. Herein, a novel S-scheme heterojunction system consisting of 2D O-doped g-C3N4 (OCN) nanosheets and 3D N-doped Nb2O5/C (N-NBO/C) nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B (RhB). Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination. The enhanced performance could be attributed to the following factors: fast charge transfer, highly-efficient charge separation, extended lifetime of photoinduced charge carriers, and the high redox capability of the photoinduced charges in the S-scheme system. Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path, meanwhile, the RhB mineralization degradation pathway was also investigated using LC-MS. This study presents an approach to constructing Nb2O5-based S-scheme heterojunctions for photocatalytic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王羊补牢完成签到 ,获得积分10
刚刚
Jasper应助雪落兮赏翩舞采纳,获得10
1秒前
xinye发布了新的文献求助10
2秒前
辛普森发布了新的文献求助10
2秒前
4秒前
Eva完成签到,获得积分10
4秒前
JamesPei应助Candice采纳,获得10
5秒前
桐桐应助xl采纳,获得10
5秒前
8秒前
Jasper应助不爱科研采纳,获得10
12秒前
慕青应助柔弱的面包采纳,获得10
13秒前
无花果应助tzj采纳,获得10
13秒前
13秒前
丘比特应助辛普森采纳,获得10
15秒前
16秒前
16秒前
hwq123完成签到,获得积分10
18秒前
Candice发布了新的文献求助10
19秒前
桐桐应助猪猪hero采纳,获得10
19秒前
20秒前
xl发布了新的文献求助10
21秒前
含蓄怜阳关注了科研通微信公众号
22秒前
22秒前
22秒前
23秒前
kakaC完成签到 ,获得积分10
24秒前
peter应助tuanheqi采纳,获得20
24秒前
jane发布了新的文献求助30
25秒前
26秒前
27秒前
Candice完成签到,获得积分0
28秒前
gu完成签到,获得积分10
30秒前
31秒前
小蘑菇应助XCcccccc采纳,获得10
31秒前
虞若菱完成签到,获得积分10
32秒前
34秒前
Zzz完成签到,获得积分10
34秒前
37秒前
善学以致用应助11纳采纳,获得10
37秒前
ceeray23发布了新的文献求助20
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3680286
求助须知:如何正确求助?哪些是违规求助? 3232750
关于积分的说明 9804532
捐赠科研通 2944044
什么是DOI,文献DOI怎么找? 1614321
邀请新用户注册赠送积分活动 762149
科研通“疑难数据库(出版商)”最低求助积分说明 737267