3D Convolutional Neural Network for Speech Emotion Recognition With Its Realization on Intel CPU and NVIDIA GPU

计算机科学 卷积神经网络 情绪识别 Python(编程语言) 语音识别 实现(概率) 人工智能 模式识别(心理学) 操作系统 统计 数学
作者
Mohammad Reza Falahzadeh,Edris Zaman Farsa,Ali Harimi,Arash Ahmadi,Ajith Abraham
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 112460-112471 被引量:9
标识
DOI:10.1109/access.2022.3217226
摘要

Due to the high level of precision and remarkable capabilities to solve the intricate problems in industry and academia, convolutional neural networks (CNNs) are presented. Speech emotion recognition is an interesting application for CNNs in the field of audio processing. In this paper, a speech emotion recognition system based on a 3D CNN is suggested to analyze and classify the emotions. In the proposed method, the three-dimensional reconstructed phase spaces of the speech signals were calculated. Then, emotion-related patterns formed in these spaces were converted into 3D tensors. Accordingly, a 3D CNN for speech emotion recognition applied to two datasets, EMO-DB and eNTERFACE05, using a speaker-independent technique achieved 90.40% and 82.20% accuracy, respectively. By employing gender recognition, the accuracy rates on EMO-DB increased to 94.42% and on eNTERFACE05 rose to 88.47%. Realization of the introduced 3D CNN on both Intel CPU and NVIDIA GPU is also explored. The results of the implemented 3D CNN without and with regard to gender recognition show that GPU-based running is faster for the EMO-DB and eNTERFACE05 datasets than CPU-based executions (using Python).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热的若枫完成签到 ,获得积分10
1秒前
hokuto应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
丸子圆圆应助科研通管家采纳,获得50
2秒前
zyfqpc应助科研通管家采纳,获得20
2秒前
Akim应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
乐乐应助El采纳,获得10
4秒前
脑洞疼应助KXX采纳,获得30
5秒前
6秒前
章鱼完成签到 ,获得积分20
6秒前
bkppforever发布了新的文献求助10
6秒前
JuinZhu完成签到,获得积分10
7秒前
PCEEN发布了新的文献求助10
7秒前
lwj完成签到,获得积分10
8秒前
深情安青应助ych62524采纳,获得10
8秒前
宇辰发布了新的文献求助30
11秒前
Akim应助LZYJJ采纳,获得10
11秒前
14秒前
努力的宝汁完成签到 ,获得积分10
16秒前
16秒前
无花果应助AC赵先生采纳,获得10
17秒前
KXX发布了新的文献求助30
18秒前
阔达书雪完成签到,获得积分10
19秒前
21秒前
21秒前
23秒前
23秒前
LZYJJ发布了新的文献求助10
26秒前
我是老大应助郑zhenglanyou采纳,获得10
26秒前
严君泽完成签到,获得积分10
27秒前
encounter完成签到,获得积分20
27秒前
瑶瑶爱七七完成签到,获得积分10
28秒前
32秒前
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155767
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871538
捐赠科研通 2465369
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905