已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enabling high-rate discharge capability and stable cycling for Ni-rich layered cathodes via multi-functional modification strategy

材料科学 阴极 电化学 涂层 兴奋剂 化学工程 表面改性 降级(电信) 图层(电子) 纳米技术 电极 冶金 光电子学 化学 电子工程 物理化学 工程类
作者
Yuan-lin CAO,Lu Wang,Xiukang Yang,Wenbo Ma,Ni Fu,Li Zou,Yansong Bai,Ping Gao,Hong-bo SHU,Li Liu,Donghui Lan,Xianyou Wang
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:440: 141763-141763 被引量:7
标识
DOI:10.1016/j.electacta.2022.141763
摘要

Nickel-rich layered cathodes have received extensive attention because of their relatively high energy density. However, the poor rate performance and inadequate cycling stability severely hinder its large-scale applications. Herein, a multi-functional modification strategy combining dual-site Mg/Nb co-doping with in-situ derived LiNbO3 coating layer is proposed. Mg2+ doped as pillar ions at Li sites can reduce the disorder of Li+/Ni2+, while Nb5+ doped at transition metal sites can improve structural stability due to its stronger Nb-O binding energy. Moreover, LiNbO3 ionically conductive nano-scale coating layer can effectively improve interface properties of the material. Benefitting from the synergistic effect of multi-functional modification strategy, the LiNi0.83Co0.12Mn0.05O2 cathode material co-modified with 2 mol% Mg and 1.4 mol% Nb exhibits extraordinarily enhanced electrochemical performance, which can display an excellent capacity retention of 84.1% after 200 cycles at 1 C and a high specific capacity of 132.9 mAh g−1 at the ultra-high rate of 30 C. Furthermore, the multi-functional modification strategy can also effectively alleviate grain-level intergranular cracks and structural degradation during long-term cycling. These results demonstrate that simultaneously using two types of doping cations together with in situ derived coating layer is an efficient and feasible modification strategy for Ni-rich layered cathodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MO发布了新的文献求助10
2秒前
2秒前
2秒前
abc123发布了新的文献求助10
3秒前
再见不难发布了新的文献求助10
3秒前
秀丽惋清完成签到 ,获得积分10
3秒前
三七发布了新的文献求助10
3秒前
3秒前
CodeCraft应助popo采纳,获得10
4秒前
后山种仙草完成签到,获得积分10
6秒前
6秒前
怡然的冰露完成签到,获得积分10
7秒前
zzz完成签到,获得积分10
7秒前
谢谢谢发布了新的文献求助10
7秒前
9秒前
9秒前
鲤鱼初柳完成签到 ,获得积分10
10秒前
Delight完成签到 ,获得积分0
13秒前
科研通AI6应助怡然的冰露采纳,获得30
13秒前
衾空发布了新的文献求助10
14秒前
WW完成签到,获得积分20
15秒前
CodeCraft应助木子采纳,获得10
16秒前
16秒前
852应助John采纳,获得10
17秒前
18秒前
19秒前
我是老大应助Breeze采纳,获得10
20秒前
科目三应助优美紫槐采纳,获得10
20秒前
Hello应助hbWang采纳,获得10
21秒前
yaoli0823发布了新的文献求助30
21秒前
21秒前
21秒前
22秒前
22秒前
DDDSK发布了新的文献求助30
23秒前
23秒前
科研通AI6应助科研小魏采纳,获得10
25秒前
John完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650215
求助须知:如何正确求助?哪些是违规求助? 4780069
关于积分的说明 15051513
捐赠科研通 4809083
什么是DOI,文献DOI怎么找? 2572018
邀请新用户注册赠送积分活动 1528258
关于科研通互助平台的介绍 1487075