Effect of Double-Quenching on the Hardness and Toughness of a Wear-Resistant Steel

材料科学 方向错误 电子背散射衍射 奥氏体 晶界 马氏体 韧性 冶金 猝灭(荧光) 微观结构 压痕硬度 复合材料 光学 荧光 物理
作者
Jingliang Wang,Rongtao Qian,Song Huang,Chengjia Shang
出处
期刊:Metals [MDPI AG]
卷期号:13 (1): 61-61 被引量:3
标识
DOI:10.3390/met13010061
摘要

Martensitic/bainitic wear-resistant steels are widely used in civilian industry, where a good combination of strength and toughness is required. In the present study, a double-quenching process was applied and compared to the conventional single-quenching process. The microhardness and ductile–brittle transition temperature were measured, and the microstructure was characterized with scanning electron microscopy and electron backscatter diffraction (EBSD) technique. It was found that the double-quenching process refined the prior austenite grain size by 43% and simultaneously improved the toughness and hardness. The ductile-to-brittle transition temperature was decreased from −77 °C to −90 °C, and the hardness was increased by 8%. Based on the EBSD data, a detailed analysis of the grain boundary distribution was performed using a recently developed machine learning model. Unlike what was found in previous studies, for the studied wear-resistant steel, the refinement of the prior austenite grain did not increase the block boundary density while increasing the high-angle packet boundary density. As a result, the total density of the high-angle grain boundaries in the double-quenched specimen was not improved compared to the single-quenched specimen. Further inspection suggested that it is the prior austenite grain boundaries and high-angle packet boundaries that contribute to the hardness and toughness, and the key factors that determine their effectiveness are the high misorientation angle between the {110} slip planes and the high slip transmission factor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
读读读关注了科研通微信公众号
1秒前
慕青应助aming采纳,获得10
2秒前
2秒前
幸运咖发布了新的文献求助30
2秒前
朝朝暮夕完成签到 ,获得积分10
2秒前
OK完成签到,获得积分10
3秒前
3秒前
violet完成签到,获得积分10
4秒前
4秒前
淡然安雁发布了新的文献求助10
4秒前
anna1992完成签到,获得积分10
4秒前
4秒前
很多奶油完成签到 ,获得积分10
5秒前
板凳完成签到 ,获得积分10
6秒前
6秒前
xixixii发布了新的文献求助10
7秒前
wyz发布了新的文献求助10
7秒前
7秒前
7秒前
典雅采珊完成签到,获得积分10
7秒前
丘比特应助科研狗采纳,获得10
8秒前
隆中对发布了新的文献求助30
9秒前
古风欧完成签到,获得积分10
10秒前
等待黎明发布了新的文献求助10
10秒前
ding应助malistm采纳,获得30
10秒前
赵格格完成签到 ,获得积分10
10秒前
机灵亦旋发布了新的文献求助10
10秒前
llx发布了新的文献求助10
11秒前
苏卿应助幸运咖采纳,获得10
11秒前
QSJ关闭了QSJ文献求助
12秒前
12秒前
13秒前
13秒前
13秒前
Harper完成签到,获得积分10
13秒前
anna1992发布了新的文献求助10
13秒前
13秒前
wumumu发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869