Effect of Double-Quenching on the Hardness and Toughness of a Wear-Resistant Steel

材料科学 方向错误 电子背散射衍射 奥氏体 晶界 马氏体 韧性 冶金 猝灭(荧光) 微观结构 压痕硬度 复合材料 光学 荧光 物理
作者
Jingliang Wang,Rongtao Qian,Song Huang,Chengjia Shang
出处
期刊:Metals [MDPI AG]
卷期号:13 (1): 61-61 被引量:3
标识
DOI:10.3390/met13010061
摘要

Martensitic/bainitic wear-resistant steels are widely used in civilian industry, where a good combination of strength and toughness is required. In the present study, a double-quenching process was applied and compared to the conventional single-quenching process. The microhardness and ductile–brittle transition temperature were measured, and the microstructure was characterized with scanning electron microscopy and electron backscatter diffraction (EBSD) technique. It was found that the double-quenching process refined the prior austenite grain size by 43% and simultaneously improved the toughness and hardness. The ductile-to-brittle transition temperature was decreased from −77 °C to −90 °C, and the hardness was increased by 8%. Based on the EBSD data, a detailed analysis of the grain boundary distribution was performed using a recently developed machine learning model. Unlike what was found in previous studies, for the studied wear-resistant steel, the refinement of the prior austenite grain did not increase the block boundary density while increasing the high-angle packet boundary density. As a result, the total density of the high-angle grain boundaries in the double-quenched specimen was not improved compared to the single-quenched specimen. Further inspection suggested that it is the prior austenite grain boundaries and high-angle packet boundaries that contribute to the hardness and toughness, and the key factors that determine their effectiveness are the high misorientation angle between the {110} slip planes and the high slip transmission factor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jy完成签到 ,获得积分10
刚刚
NexusExplorer应助立马毕业采纳,获得10
1秒前
在水一方应助123采纳,获得10
2秒前
科目三应助白华苍松采纳,获得10
3秒前
通~发布了新的文献求助10
3秒前
CipherSage应助千幻采纳,获得10
3秒前
3秒前
dddddd完成签到,获得积分10
3秒前
桂魄发布了新的文献求助10
3秒前
年轻的咖啡豆完成签到,获得积分20
4秒前
4秒前
绿洲发布了新的文献求助10
4秒前
4秒前
5秒前
aDou完成签到 ,获得积分10
5秒前
脑洞疼应助bc采纳,获得10
5秒前
NEMO发布了新的文献求助10
5秒前
李健应助mammoth采纳,获得20
5秒前
熊boy发布了新的文献求助10
5秒前
天真思雁发布了新的文献求助10
5秒前
6秒前
情怀应助蔡蔡不菜菜采纳,获得10
6秒前
shouyu29应助MADKAI采纳,获得10
7秒前
CipherSage应助MADKAI采纳,获得10
7秒前
乐乐应助MADKAI采纳,获得10
7秒前
ChangSZ应助MADKAI采纳,获得10
7秒前
乐乐应助MADKAI采纳,获得10
7秒前
小飞七应助MADKAI采纳,获得10
7秒前
Akim应助MADKAI采纳,获得20
7秒前
科研通AI5应助MADKAI采纳,获得10
7秒前
充电宝应助MADKAI采纳,获得10
7秒前
buno应助MADKAI采纳,获得10
7秒前
7秒前
小唐完成签到 ,获得积分0
9秒前
思源应助年轻的咖啡豆采纳,获得10
9秒前
11秒前
科研通AI5应助junc采纳,获得20
11秒前
绿洲完成签到,获得积分10
12秒前
12秒前
yf_zhu发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762