亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effect of Double-Quenching on the Hardness and Toughness of a Wear-Resistant Steel

材料科学 方向错误 电子背散射衍射 奥氏体 晶界 马氏体 韧性 冶金 猝灭(荧光) 微观结构 压痕硬度 复合材料 光学 荧光 物理
作者
Jingliang Wang,Rongtao Qian,Song Huang,Chengjia Shang
出处
期刊:Metals [MDPI AG]
卷期号:13 (1): 61-61 被引量:8
标识
DOI:10.3390/met13010061
摘要

Martensitic/bainitic wear-resistant steels are widely used in civilian industry, where a good combination of strength and toughness is required. In the present study, a double-quenching process was applied and compared to the conventional single-quenching process. The microhardness and ductile–brittle transition temperature were measured, and the microstructure was characterized with scanning electron microscopy and electron backscatter diffraction (EBSD) technique. It was found that the double-quenching process refined the prior austenite grain size by 43% and simultaneously improved the toughness and hardness. The ductile-to-brittle transition temperature was decreased from −77 °C to −90 °C, and the hardness was increased by 8%. Based on the EBSD data, a detailed analysis of the grain boundary distribution was performed using a recently developed machine learning model. Unlike what was found in previous studies, for the studied wear-resistant steel, the refinement of the prior austenite grain did not increase the block boundary density while increasing the high-angle packet boundary density. As a result, the total density of the high-angle grain boundaries in the double-quenched specimen was not improved compared to the single-quenched specimen. Further inspection suggested that it is the prior austenite grain boundaries and high-angle packet boundaries that contribute to the hardness and toughness, and the key factors that determine their effectiveness are the high misorientation angle between the {110} slip planes and the high slip transmission factor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈完成签到,获得积分10
2秒前
10秒前
10秒前
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
领导范儿应助Elen1987采纳,获得10
15秒前
16秒前
科研通AI6.1应助jy采纳,获得10
28秒前
29秒前
34秒前
Lucas应助KKLUV采纳,获得10
36秒前
39秒前
jy发布了新的文献求助10
46秒前
54秒前
伊力扎提完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
852应助zslg采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
zslg发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
如意秋珊完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732308
求助须知:如何正确求助?哪些是违规求助? 5338178
关于积分的说明 15322147
捐赠科研通 4877945
什么是DOI,文献DOI怎么找? 2620761
邀请新用户注册赠送积分活动 1569978
关于科研通互助平台的介绍 1526615