The Impact of Social Nudges on User-Generated Content for Social Network Platforms

轻推理论 社交网络(社会语言学) 计算机科学 用户生成的内容 互联网隐私 社会化媒体 万维网 心理学 社会心理学
作者
Zhiyu Zeng,Hengchen Dai,Dennis Zhang,Heng Zhang,Renyu Zhang,Zhiwei Xu,Zuo‐Jun Max Shen
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (9): 5189-5208 被引量:39
标识
DOI:10.1287/mnsc.2022.4622
摘要

Content-sharing social network platforms rely heavily on user-generated content to attract users and advertisers, but they have limited authority over content provision. We develop an intervention that leverages social interactions between users to stimulate content production. We study social nudges, whereby users connected with a content provider on a platform encourage that provider to supply more content. We conducted a randomized field experiment (N [Formula: see text]) on a video-sharing social network platform where treatment providers could receive messages from other users encouraging them to produce more, but control providers could not. We find that social nudges not only immediately boosted video supply by 13.21% without changing video quality but also, increased the number of nudges providers sent to others by 15.57%. Such production-boosting and diffusion effects, although declining over time, lasted beyond the day of receiving nudges and were amplified when nudge senders and recipients had stronger ties. We replicate these results in a second experiment. To estimate the overall production boost over the entire network and guide platforms to utilize social nudges, we combine the experimental data with a social network model that captures the diffusion and over-time effects of social nudges. We showcase the importance of considering the network effects when estimating the impact of social nudges and optimizing platform operations regarding social nudges. Our research highlights the value of leveraging co-user influence for platforms and provides guidance for future research to incorporate the diffusion of an intervention into the estimation of its impacts within a social network. This paper was accepted by Victor Martínez-de-Albéniz, operations management. Funding: H. Dai thanks the University of California, Los Angeles (UCLA) [Hellman Fellowship and Faculty Development Award] for funding support. R. Zhang is grateful for financial support from the Hong Kong Research Grants Council [Grant 16505418]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4622 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Booksiy2完成签到,获得积分10
刚刚
小云杉应助hanghang采纳,获得20
2秒前
傻瓜发布了新的文献求助10
3秒前
3秒前
4秒前
hh完成签到,获得积分10
4秒前
蒋j完成签到,获得积分10
4秒前
4秒前
haruka完成签到,获得积分20
4秒前
GSQ完成签到,获得积分10
5秒前
hjy完成签到,获得积分20
6秒前
谨慎的雍完成签到,获得积分10
6秒前
知风发布了新的文献求助30
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
赘婿应助linda采纳,获得20
8秒前
狼主完成签到 ,获得积分10
8秒前
8秒前
崔cc发布了新的文献求助10
9秒前
9秒前
重要问筠完成签到,获得积分10
9秒前
9秒前
FXQ123_范完成签到,获得积分10
9秒前
笨笨熊发布了新的文献求助10
10秒前
卞兰完成签到 ,获得积分10
10秒前
赘婿应助小爱采纳,获得10
10秒前
白青完成签到,获得积分10
10秒前
jimmyhui发布了新的文献求助10
10秒前
科目三应助wfy采纳,获得10
10秒前
10秒前
安逸完成签到,获得积分20
10秒前
momo妈咪完成签到 ,获得积分10
10秒前
ding应助齐全采纳,获得10
11秒前
兔BF完成签到,获得积分10
11秒前
wanci应助swj采纳,获得10
11秒前
hjy发布了新的文献求助10
11秒前
爆米花应助饭后瞌睡采纳,获得10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009557
求助须知:如何正确求助?哪些是违规求助? 3549561
关于积分的说明 11302629
捐赠科研通 3284139
什么是DOI,文献DOI怎么找? 1810469
邀请新用户注册赠送积分活动 886322
科研通“疑难数据库(出版商)”最低求助积分说明 811345