A deep learning workflow for weak reflection extraction in pitch-catch measurements in the cased hole

计算机科学 套管 工作流程 Eikonal方程 深度学习 反射(计算机编程) 声学 人工智能 地质学 地球物理学 物理 数据库 量子力学 程序设计语言
作者
Qiang Wang,Hua Wang,Shaopeng Shi
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (2): D147-D157 被引量:4
标识
DOI:10.1190/geo2022-0243.1
摘要

As a key technology to evaluate cement bonds in the cased hole, an advanced ultrasonic logging tool combines pulse-echo and pitch-catch measurements in which the latter one provides reflections from the cement-formation interface (called third-interface-echo [TIE]) to evaluate the bond condition and determine casing eccentering as well as cement velocity. However, the TIE would be weak and not easy to pick due to the eccentered tool and casing and it would overlap with the strong multiple reflections between the casing inner surface and the transducer-housing tool. We have developed a deep learning workflow to extract weak TIE from noisy data and to preserve its amplitude at the same time. First, we use synthetic waveforms from thousands of finite-difference simulations as initial training data sets to train a deep learning network, which is modified from a network in speech separation. Then, the trained model is used to predict the field data through an active-learning strategy. The improved network is further used to extract the weak TIEs, which are not easy to pick in the initial deep learning model. Finally, the TIE waves image is converted to a pseudovelocity image to obtain the minimum traveltime path by solving the eikonal equation. The shortest traveltime path is used as the TIE arrival time. In addition, a 3D visualization is used to display the borehole shape from the picked arrival time. The applications in synthetic data and data set from a calibration well illustrate a good performance of our workflow in which the weakest TIE extracted from the network can reach 50 dB compared to the maximum amplitude in the full waveform. The picked arrival times can be used to reconstruct a borehole shape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助Uaena采纳,获得10
1秒前
赘婿应助陈82采纳,获得20
1秒前
2秒前
3秒前
关中大侠的涮肉坊完成签到,获得积分10
3秒前
3秒前
肚子好e啊完成签到 ,获得积分10
4秒前
夜神月发布了新的文献求助10
5秒前
Genius完成签到,获得积分10
5秒前
6秒前
英姑应助亦玉采纳,获得10
6秒前
wdddr发布了新的文献求助10
8秒前
Davidjun完成签到,获得积分10
8秒前
9秒前
9秒前
王乾宇完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助很好采纳,获得10
11秒前
嘻嘻哈哈应助Tutu采纳,获得10
13秒前
彭于晏应助zhang采纳,获得10
13秒前
Peyton Why完成签到,获得积分10
13秒前
13秒前
浮游应助年轻的绿凝采纳,获得30
13秒前
CodeCraft应助森葵采纳,获得10
14秒前
14秒前
浮游应助瓜瓜采纳,获得10
15秒前
17秒前
最佳发布了新的文献求助30
17秒前
17秒前
清欢昌丽发布了新的文献求助10
17秒前
共享精神应助huangduanku采纳,获得10
17秒前
18秒前
19秒前
duyuqing完成签到 ,获得积分10
19秒前
CDQ完成签到,获得积分10
21秒前
sly完成签到,获得积分10
22秒前
22秒前
木沐发布了新的文献求助10
22秒前
Orange应助尊敬谷波采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308512
求助须知:如何正确求助?哪些是违规求助? 4453661
关于积分的说明 13857726
捐赠科研通 4341377
什么是DOI,文献DOI怎么找? 2383861
邀请新用户注册赠送积分活动 1378491
关于科研通互助平台的介绍 1346482