A deep learning workflow for weak reflection extraction in pitch-catch measurements in the cased hole

计算机科学 套管 工作流程 Eikonal方程 深度学习 反射(计算机编程) 声学 人工智能 地质学 地球物理学 物理 数据库 量子力学 程序设计语言
作者
Qiang Wang,Hua Wang,Shaopeng Shi
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (2): D147-D157 被引量:4
标识
DOI:10.1190/geo2022-0243.1
摘要

As a key technology to evaluate cement bonds in the cased hole, an advanced ultrasonic logging tool combines pulse-echo and pitch-catch measurements in which the latter one provides reflections from the cement-formation interface (called third-interface-echo [TIE]) to evaluate the bond condition and determine casing eccentering as well as cement velocity. However, the TIE would be weak and not easy to pick due to the eccentered tool and casing and it would overlap with the strong multiple reflections between the casing inner surface and the transducer-housing tool. We have developed a deep learning workflow to extract weak TIE from noisy data and to preserve its amplitude at the same time. First, we use synthetic waveforms from thousands of finite-difference simulations as initial training data sets to train a deep learning network, which is modified from a network in speech separation. Then, the trained model is used to predict the field data through an active-learning strategy. The improved network is further used to extract the weak TIEs, which are not easy to pick in the initial deep learning model. Finally, the TIE waves image is converted to a pseudovelocity image to obtain the minimum traveltime path by solving the eikonal equation. The shortest traveltime path is used as the TIE arrival time. In addition, a 3D visualization is used to display the borehole shape from the picked arrival time. The applications in synthetic data and data set from a calibration well illustrate a good performance of our workflow in which the weakest TIE extracted from the network can reach 50 dB compared to the maximum amplitude in the full waveform. The picked arrival times can be used to reconstruct a borehole shape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助zzz采纳,获得10
3秒前
在水一方应助zzz采纳,获得10
3秒前
科研通AI5应助王肖采纳,获得10
3秒前
Tullips完成签到 ,获得积分10
4秒前
沧海泪发布了新的文献求助20
5秒前
量子星尘发布了新的文献求助150
6秒前
:P发布了新的文献求助10
6秒前
6秒前
打打应助落后寒云采纳,获得10
6秒前
shaun完成签到,获得积分10
7秒前
唠叨的凌雪完成签到,获得积分10
7秒前
9秒前
阳佟水蓉完成签到,获得积分10
9秒前
12秒前
13秒前
嘻嘻发布了新的文献求助10
13秒前
神勇难胜发布了新的文献求助10
13秒前
宋宋发布了新的文献求助10
13秒前
虚心以丹完成签到,获得积分10
15秒前
黄元元发布了新的文献求助10
16秒前
落后寒云发布了新的文献求助10
17秒前
20秒前
零食宝发布了新的文献求助10
23秒前
思源应助宋宋采纳,获得10
24秒前
活泼红牛完成签到,获得积分10
24秒前
wangjunhui完成签到,获得积分20
25秒前
田様应助嘿咻采纳,获得50
26秒前
27秒前
27秒前
27秒前
tong77完成签到,获得积分10
27秒前
田様应助12345采纳,获得10
28秒前
badgerwithfisher完成签到,获得积分10
28秒前
NexusExplorer应助丰富的河马采纳,获得10
29秒前
烟花应助开心万岁采纳,获得10
30秒前
30秒前
31秒前
王强发布了新的文献求助10
31秒前
32秒前
raziel完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4907041
求助须知:如何正确求助?哪些是违规求助? 4184352
关于积分的说明 12993549
捐赠科研通 3950645
什么是DOI,文献DOI怎么找? 2166580
邀请新用户注册赠送积分活动 1185172
关于科研通互助平台的介绍 1091512