A deep learning workflow for weak reflection extraction in pitch-catch measurements in the cased hole

计算机科学 套管 工作流程 Eikonal方程 深度学习 反射(计算机编程) 声学 人工智能 地质学 地球物理学 物理 数据库 量子力学 程序设计语言
作者
Qiang Wang,Hua Wang,Shaopeng Shi
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (2): D147-D157 被引量:3
标识
DOI:10.1190/geo2022-0243.1
摘要

As a key technology to evaluate cement bonds in the cased hole, an advanced ultrasonic logging tool combines pulse-echo and pitch-catch measurements in which the latter one provides reflections from the cement-formation interface (called third-interface-echo [TIE]) to evaluate the bond condition and determine casing eccentering as well as cement velocity. However, the TIE would be weak and not easy to pick due to the eccentered tool and casing and it would overlap with the strong multiple reflections between the casing inner surface and the transducer-housing tool. We have developed a deep learning workflow to extract weak TIE from noisy data and to preserve its amplitude at the same time. First, we use synthetic waveforms from thousands of finite-difference simulations as initial training data sets to train a deep learning network, which is modified from a network in speech separation. Then, the trained model is used to predict the field data through an active-learning strategy. The improved network is further used to extract the weak TIEs, which are not easy to pick in the initial deep learning model. Finally, the TIE waves image is converted to a pseudovelocity image to obtain the minimum traveltime path by solving the eikonal equation. The shortest traveltime path is used as the TIE arrival time. In addition, a 3D visualization is used to display the borehole shape from the picked arrival time. The applications in synthetic data and data set from a calibration well illustrate a good performance of our workflow in which the weakest TIE extracted from the network can reach 50 dB compared to the maximum amplitude in the full waveform. The picked arrival times can be used to reconstruct a borehole shape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tcmlida完成签到,获得积分10
2秒前
ZXL发布了新的文献求助10
2秒前
传奇3应助ziwei采纳,获得10
2秒前
3秒前
3秒前
科研通AI2S应助淡淡的谷丝采纳,获得10
5秒前
阿水发布了新的文献求助10
7秒前
7秒前
可以的发布了新的文献求助10
8秒前
LHL发布了新的文献求助10
8秒前
酷酷妙梦发布了新的文献求助10
10秒前
周小完成签到,获得积分10
10秒前
凌云发布了新的文献求助10
12秒前
jiujiuhuang发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
共享精神应助LHL采纳,获得10
16秒前
方可完成签到,获得积分10
17秒前
17秒前
DMMM发布了新的文献求助10
19秒前
丘比特应助soong采纳,获得10
20秒前
20秒前
ding应助爱看论文的小K采纳,获得10
20秒前
22秒前
23秒前
科研哈士奇完成签到,获得积分10
23秒前
24秒前
深情安青应助缺粥采纳,获得10
24秒前
咸鱼好翻身完成签到,获得积分10
25秒前
晨曦发布了新的文献求助10
27秒前
李佳发布了新的文献求助10
27秒前
兴奋千兰完成签到,获得积分20
27秒前
28秒前
端庄谷南发布了新的文献求助10
29秒前
29秒前
29秒前
29秒前
wanci发布了新的文献求助10
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919