A deep learning workflow for weak reflection extraction in pitch-catch measurements in the cased hole

计算机科学 套管 工作流程 Eikonal方程 深度学习 反射(计算机编程) 声学 人工智能 地质学 地球物理学 物理 数据库 量子力学 程序设计语言
作者
Qiang Wang,Hua Wang,Shaopeng Shi
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (2): D147-D157 被引量:4
标识
DOI:10.1190/geo2022-0243.1
摘要

As a key technology to evaluate cement bonds in the cased hole, an advanced ultrasonic logging tool combines pulse-echo and pitch-catch measurements in which the latter one provides reflections from the cement-formation interface (called third-interface-echo [TIE]) to evaluate the bond condition and determine casing eccentering as well as cement velocity. However, the TIE would be weak and not easy to pick due to the eccentered tool and casing and it would overlap with the strong multiple reflections between the casing inner surface and the transducer-housing tool. We have developed a deep learning workflow to extract weak TIE from noisy data and to preserve its amplitude at the same time. First, we use synthetic waveforms from thousands of finite-difference simulations as initial training data sets to train a deep learning network, which is modified from a network in speech separation. Then, the trained model is used to predict the field data through an active-learning strategy. The improved network is further used to extract the weak TIEs, which are not easy to pick in the initial deep learning model. Finally, the TIE waves image is converted to a pseudovelocity image to obtain the minimum traveltime path by solving the eikonal equation. The shortest traveltime path is used as the TIE arrival time. In addition, a 3D visualization is used to display the borehole shape from the picked arrival time. The applications in synthetic data and data set from a calibration well illustrate a good performance of our workflow in which the weakest TIE extracted from the network can reach 50 dB compared to the maximum amplitude in the full waveform. The picked arrival times can be used to reconstruct a borehole shape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmm完成签到,获得积分10
2秒前
ling发布了新的文献求助10
3秒前
3秒前
3秒前
望江饮月完成签到,获得积分10
4秒前
4秒前
CNJX完成签到,获得积分10
4秒前
rachel03发布了新的文献求助10
4秒前
5秒前
7秒前
遇见飞儿完成签到,获得积分10
7秒前
9秒前
FashionBoy应助菲菲不是飞飞采纳,获得10
9秒前
酱酱发布了新的文献求助10
10秒前
格格巫发布了新的文献求助10
10秒前
老阎应助科研通管家采纳,获得30
10秒前
MaoSen发布了新的文献求助10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Bio应助科研通管家采纳,获得150
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
老阎应助科研通管家采纳,获得30
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
wlscj应助科研通管家采纳,获得20
11秒前
styrene应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得30
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
12秒前
望江饮月发布了新的文献求助20
12秒前
12秒前
ouyoha完成签到,获得积分10
13秒前
wlscj应助咖飞采纳,获得20
14秒前
夜城如梦醉完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296623
求助须知:如何正确求助?哪些是违规求助? 4445778
关于积分的说明 13837294
捐赠科研通 4330749
什么是DOI,文献DOI怎么找? 2377237
邀请新用户注册赠送积分活动 1372556
关于科研通互助平台的介绍 1337990