A deep learning workflow for weak reflection extraction in pitch-catch measurements in the cased hole

计算机科学 套管 工作流程 Eikonal方程 深度学习 反射(计算机编程) 声学 人工智能 地质学 地球物理学 物理 数据库 量子力学 程序设计语言
作者
Qiang Wang,Hua Wang,Shaopeng Shi
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (2): D147-D157 被引量:4
标识
DOI:10.1190/geo2022-0243.1
摘要

As a key technology to evaluate cement bonds in the cased hole, an advanced ultrasonic logging tool combines pulse-echo and pitch-catch measurements in which the latter one provides reflections from the cement-formation interface (called third-interface-echo [TIE]) to evaluate the bond condition and determine casing eccentering as well as cement velocity. However, the TIE would be weak and not easy to pick due to the eccentered tool and casing and it would overlap with the strong multiple reflections between the casing inner surface and the transducer-housing tool. We have developed a deep learning workflow to extract weak TIE from noisy data and to preserve its amplitude at the same time. First, we use synthetic waveforms from thousands of finite-difference simulations as initial training data sets to train a deep learning network, which is modified from a network in speech separation. Then, the trained model is used to predict the field data through an active-learning strategy. The improved network is further used to extract the weak TIEs, which are not easy to pick in the initial deep learning model. Finally, the TIE waves image is converted to a pseudovelocity image to obtain the minimum traveltime path by solving the eikonal equation. The shortest traveltime path is used as the TIE arrival time. In addition, a 3D visualization is used to display the borehole shape from the picked arrival time. The applications in synthetic data and data set from a calibration well illustrate a good performance of our workflow in which the weakest TIE extracted from the network can reach 50 dB compared to the maximum amplitude in the full waveform. The picked arrival times can be used to reconstruct a borehole shape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miners发布了新的文献求助10
刚刚
笔墨留香发布了新的文献求助10
刚刚
研友_VZG7GZ应助王先生采纳,获得10
1秒前
iwonder完成签到 ,获得积分10
1秒前
可爱的函函应助追寻采纳,获得10
1秒前
2秒前
清脆火龙果完成签到,获得积分10
2秒前
可爱的函函应助暴躁的苡采纳,获得10
2秒前
我爱吃火锅完成签到,获得积分10
3秒前
3秒前
7九完成签到,获得积分10
3秒前
NexusExplorer应助晞晞采纳,获得10
4秒前
Zx_1993应助典雅涵瑶采纳,获得50
4秒前
乐乐应助Qing采纳,获得10
4秒前
四叶草哦完成签到,获得积分10
5秒前
宋浩奇发布了新的文献求助10
5秒前
Hello应助洁净诗槐采纳,获得10
6秒前
z荩完成签到,获得积分20
6秒前
虚拟的秋寒完成签到,获得积分10
6秒前
6秒前
111发布了新的文献求助10
7秒前
qpisuo发布了新的文献求助10
8秒前
deep完成签到,获得积分20
8秒前
9秒前
9秒前
浮游应助Zhengkeke采纳,获得10
10秒前
orixero应助云山采纳,获得10
11秒前
11秒前
11秒前
SciGPT应助chenping_an采纳,获得10
11秒前
12秒前
Yi羿完成签到 ,获得积分10
12秒前
12秒前
共享精神应助fkhuny采纳,获得10
12秒前
SimonShaw完成签到,获得积分10
12秒前
13秒前
cheng完成签到,获得积分20
13秒前
旺仔冰激凌完成签到,获得积分10
13秒前
14秒前
上官若男应助朴素山兰采纳,获得10
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165