Machine learning-based techniques to improve lung transplantation outcomes and complications: a systematic review

机器学习 人工智能 支持向量机 计算机科学 随机森林 决策树 逻辑回归 朴素贝叶斯分类器 梯度升压 人工神经网络 马尔可夫毯 医学 马尔可夫模型 马尔可夫链 马尔可夫性质
作者
Marsa Gholamzadeh,Hamidreza Abtahi,Reza Safdari
出处
期刊:BMC Medical Research Methodology [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12874-022-01823-2
摘要

Machine learning has been used to develop predictive models to support clinicians in making better and more reliable decisions. The high volume of collected data in the lung transplant process makes it possible to extract hidden patterns by applying machine learning methods. Our study aims to investigate the application of machine learning methods in lung transplantation.A systematic search was conducted in five electronic databases from January 2000 to June 2022. Then, the title, abstracts, and full text of extracted articles were screened based on the PRISMA checklist. Then, eligible articles were selected according to inclusion criteria. The information regarding developed models was extracted from reviewed articles using a data extraction sheet.Searches yielded 414 citations. Of them, 136 studies were excluded after the title and abstract screening. Finally, 16 articles were determined as eligible studies that met our inclusion criteria. The objectives of eligible articles are classified into eight main categories. The applied machine learning methods include the Support vector machine (SVM) (n = 5, 31.25%) technique, logistic regression (n = 4, 25%), Random Forests (RF) (n = 4, 25%), Bayesian network (BN) (n = 3, 18.75%), linear regression (LR) (n = 3, 18.75%), Decision Tree (DT) (n = 3, 18.75%), neural networks (n = 3, 18.75%), Markov Model (n = 1, 6.25%), KNN (n = 1, 6.25%), K-means (n = 1, 6.25%), Gradient Boosting trees (XGBoost) (n = 1, 6.25%), and Convolutional Neural Network (CNN) (n = 1, 6.25%). Most studies (n = 11) employed more than one machine learning technique or combination of different techniques to make their models. The data obtained from pulmonary function tests were the most used as input variables in predictive model development. Most studies (n = 10) used only post-transplant patient information to develop their models. Also, UNOS was recognized as the most desirable data source in the reviewed articles. In most cases, clinicians succeeded to predict acute diseases incidence after lung transplantation (n = 4) or estimate survival rate (n = 4) by developing machine learning models.The outcomes of these developed prediction models could aid clinicians to make better and more reliable decisions by extracting new knowledge from the huge volume of lung transplantation data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助雷小牛采纳,获得10
刚刚
刚刚
ccc发布了新的文献求助10
1秒前
evilhag完成签到,获得积分10
4秒前
xfq0829完成签到 ,获得积分10
4秒前
青菜完成签到,获得积分20
5秒前
tiantian8715发布了新的文献求助10
5秒前
鲁老九发布了新的文献求助10
6秒前
tzy完成签到,获得积分10
7秒前
整齐的蜻蜓完成签到 ,获得积分10
7秒前
9秒前
9秒前
oceanao应助fdw采纳,获得10
10秒前
英俊的铭应助hebhm采纳,获得10
12秒前
12秒前
13秒前
yyhatb完成签到,获得积分10
13秒前
ding应助简单如容采纳,获得10
15秒前
16秒前
斗南红缨发布了新的文献求助10
16秒前
yangweijing完成签到 ,获得积分10
17秒前
小凯应助三两白菜采纳,获得10
19秒前
volcanor完成签到,获得积分10
19秒前
ccc发布了新的文献求助10
21秒前
yh完成签到,获得积分10
23秒前
小蘑菇应助简单如容采纳,获得10
24秒前
隐形曼青应助volcanor采纳,获得10
24秒前
CipherSage应助yuwq采纳,获得30
26秒前
26秒前
28秒前
连牙蓝上了吗完成签到 ,获得积分10
29秒前
Rico完成签到,获得积分10
30秒前
luwenbin完成签到,获得积分10
30秒前
iWatchTheMoon应助简单如容采纳,获得10
32秒前
34秒前
34秒前
研友_8K2GPZ发布了新的文献求助10
35秒前
科研通AI2S应助喷火龙采纳,获得10
36秒前
37秒前
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187