Machine learning-based techniques to improve lung transplantation outcomes and complications: a systematic review

机器学习 人工智能 支持向量机 计算机科学 随机森林 决策树 逻辑回归 朴素贝叶斯分类器 梯度升压 人工神经网络 马尔可夫毯 医学 马尔可夫模型 马尔可夫链 马尔可夫性质
作者
Marsa Gholamzadeh,Hamidreza Abtahi,Reza Safdari
出处
期刊:BMC Medical Research Methodology [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12874-022-01823-2
摘要

Machine learning has been used to develop predictive models to support clinicians in making better and more reliable decisions. The high volume of collected data in the lung transplant process makes it possible to extract hidden patterns by applying machine learning methods. Our study aims to investigate the application of machine learning methods in lung transplantation.A systematic search was conducted in five electronic databases from January 2000 to June 2022. Then, the title, abstracts, and full text of extracted articles were screened based on the PRISMA checklist. Then, eligible articles were selected according to inclusion criteria. The information regarding developed models was extracted from reviewed articles using a data extraction sheet.Searches yielded 414 citations. Of them, 136 studies were excluded after the title and abstract screening. Finally, 16 articles were determined as eligible studies that met our inclusion criteria. The objectives of eligible articles are classified into eight main categories. The applied machine learning methods include the Support vector machine (SVM) (n = 5, 31.25%) technique, logistic regression (n = 4, 25%), Random Forests (RF) (n = 4, 25%), Bayesian network (BN) (n = 3, 18.75%), linear regression (LR) (n = 3, 18.75%), Decision Tree (DT) (n = 3, 18.75%), neural networks (n = 3, 18.75%), Markov Model (n = 1, 6.25%), KNN (n = 1, 6.25%), K-means (n = 1, 6.25%), Gradient Boosting trees (XGBoost) (n = 1, 6.25%), and Convolutional Neural Network (CNN) (n = 1, 6.25%). Most studies (n = 11) employed more than one machine learning technique or combination of different techniques to make their models. The data obtained from pulmonary function tests were the most used as input variables in predictive model development. Most studies (n = 10) used only post-transplant patient information to develop their models. Also, UNOS was recognized as the most desirable data source in the reviewed articles. In most cases, clinicians succeeded to predict acute diseases incidence after lung transplantation (n = 4) or estimate survival rate (n = 4) by developing machine learning models.The outcomes of these developed prediction models could aid clinicians to make better and more reliable decisions by extracting new knowledge from the huge volume of lung transplantation data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助猪猪hero采纳,获得10
3秒前
李健的小迷弟应助萤火虫采纳,获得10
4秒前
4秒前
完美世界应助mue采纳,获得10
4秒前
星河长明完成签到,获得积分10
4秒前
林海发布了新的文献求助10
4秒前
杳鸢应助辛勤太阳采纳,获得10
4秒前
酷波er应助亦之采纳,获得10
5秒前
5秒前
白桃枝完成签到,获得积分10
5秒前
6秒前
Crystal发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
李田田发布了新的文献求助10
9秒前
SciGPT应助lxy采纳,获得10
9秒前
好运连连完成签到 ,获得积分10
9秒前
十四发布了新的文献求助10
10秒前
11秒前
12秒前
之风百度完成签到 ,获得积分10
12秒前
艾琳克斯完成签到 ,获得积分10
13秒前
13秒前
yu发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
14秒前
赘婿应助xuhan采纳,获得10
15秒前
叶问发布了新的文献求助10
15秒前
Owen应助张豪杰采纳,获得10
16秒前
17秒前
Akim应助爱笑的凡之采纳,获得10
18秒前
18秒前
18秒前
猪猪hero发布了新的文献求助10
19秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230