GTFE-Net: A Gramian Time Frequency Enhancement CNN for bearing fault diagnosis

计算机科学 降噪 噪音(视频) 断层(地质) 卷积神经网络 格拉米安矩阵 特征提取 特征(语言学) 还原(数学) 人工智能 模式识别(心理学) 数学 地质学 哲学 物理 图像(数学) 特征向量 量子力学 地震学 语言学 几何学
作者
Linshan Jia,Tommy W. S. Chow,Yixuan Yuan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:119: 105794-105794 被引量:80
标识
DOI:10.1016/j.engappai.2022.105794
摘要

Fault diagnosis of the bearing is vital for the safe and reliable operation of rotating machines in the manufacturing industry. Convolutional neural networks (CNNs) have been popular in bearing fault diagnosis by right of robust and reliable feature extraction ability. However, the collected vibrational signals from machines are usually corrupted by unrelated noises due to complicated transfer path modulations and component coupling. As traditional CNN lacks the denoising structure, its capability of extracting features from vibrational features is restrained by noise disturbances. In response to the above issue, this paper first proposes a simple but efficient Gramian-based noise reduction strategy called Gramian Noise Reduction (GNR) based on the periodic self-similarity of vibrational signals. Second, for the problem of lacking denoising structure in traditional CNNs, a novel end-to-end GNR-based CNN model, termed as Gramian Time Frequency Enhancement Network (GTFE-Net), is presented for bearing fault diagnosis. The GTFE-Net has three branches to parallelly process the raw original signal, the GNR denoised signal, and the frequency spectrums, respectively. GNR is integrated into the GTFE-Net, prompting the network to pay more attention to feature extraction rather than noise suppression. Three case studies using test rig and real engineering datasets are performed to verify the effectiveness of the proposed method for bearing fault diagnosis. The experimental results show that the GTFE-Net can reduce the useless noises in vibrational signals and deliver a remarkable improvement in classification performance compared with the six state-of-the-art methods. The source code is available at
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FAN完成签到,获得积分10
刚刚
刚刚
wangdi发布了新的文献求助10
1秒前
Laser发布了新的文献求助10
3秒前
orixero应助文龙采纳,获得10
4秒前
5秒前
6秒前
GG发布了新的文献求助10
6秒前
深情安青应助粗心的时光采纳,获得10
7秒前
7秒前
7秒前
7秒前
乐观啤酒应助痴情的秋尽采纳,获得10
7秒前
CodeCraft应助木木采纳,获得10
9秒前
9秒前
Laser完成签到,获得积分10
9秒前
七七完成签到 ,获得积分10
9秒前
10秒前
AHR发布了新的文献求助10
10秒前
yk发布了新的文献求助10
11秒前
务实静槐完成签到,获得积分10
11秒前
盼盼小面包完成签到,获得积分10
11秒前
喵喵完成签到,获得积分10
12秒前
12秒前
wwyy完成签到,获得积分10
12秒前
Cryo发布了新的文献求助10
12秒前
CGBIO发布了新的文献求助10
12秒前
汉堡包应助hhhhhhmt采纳,获得10
13秒前
starying发布了新的文献求助10
15秒前
jiang发布了新的文献求助10
15秒前
sss发布了新的文献求助10
16秒前
传奇3应助小易同学采纳,获得10
16秒前
又又岩完成签到,获得积分10
17秒前
17秒前
Cryo完成签到,获得积分10
17秒前
小懒发布了新的文献求助10
17秒前
yk完成签到,获得积分10
18秒前
19秒前
liu发布了新的文献求助30
21秒前
大个应助wenny采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743782
求助须知:如何正确求助?哪些是违规求助? 3286427
关于积分的说明 10050288
捐赠科研通 3002956
什么是DOI,文献DOI怎么找? 1648631
邀请新用户注册赠送积分活动 784708
科研通“疑难数据库(出版商)”最低求助积分说明 750802