已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aspect-Level Sentiment Analysis Using CNN Over BERT-GCN

计算机科学 情绪分析 人工智能
作者
Huyen Trang Phan,Ngoc Thanh Nguyên,Dosam Hwang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 110402-110409 被引量:24
标识
DOI:10.1109/access.2022.3214233
摘要

The increase in the volume of user-generated content on Twitter has resulted in tweet sentiment analysis becoming an essential tool for the extraction of information about Twitter users' emotional state. Consequently, there has been a rapid growth of tweet sentiment analysis in the area of natural language processing. Tweet sentiment analysis is increasingly applied in many areas, such as decision support systems and recommendation systems. Therefore, improving the accuracy of tweet sentiment analysis has become practical and an area of interest for many researchers. Many approaches have tried to improve the performance of tweet sentiment analysis methods by using the feature ensemble method. However, most of the previous methods attempted to model the syntactic information of words without considering the sentiment context of these words. Besides, the positioning of words and the impact of phrases containing fuzzy sentiment have not been mentioned in many studies. This study proposed a new approach based on a feature ensemble model related to tweets containing fuzzy sentiment by taking into account elements such as lexical, word-type, semantic, position, and sentiment polarity of words. The proposed method has been experimented on with real data, and the result proves effective in improving the performance of tweet sentiment analysis in terms of the F 1 score.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吴开心发布了新的文献求助10
3秒前
季子渊完成签到,获得积分10
6秒前
8秒前
xiaxiao应助李开心采纳,获得100
10秒前
11发布了新的文献求助10
11秒前
传奇3应助kaiser_e6采纳,获得10
12秒前
13秒前
姽婳wy发布了新的文献求助10
15秒前
17秒前
三毛完成签到,获得积分10
18秒前
科研通AI2S应助scirev采纳,获得10
18秒前
成熟稳重痴情完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
21秒前
21秒前
三毛发布了新的文献求助10
21秒前
杳鸢应助吴开心采纳,获得30
22秒前
23秒前
24秒前
24秒前
咿咿呀呀发布了新的文献求助10
25秒前
呆萌沛蓝发布了新的文献求助10
25秒前
吴宵发布了新的文献求助10
25秒前
充电宝应助Missinmygirl采纳,获得10
26秒前
纸芯发布了新的文献求助30
26秒前
26秒前
仿生躯壳发布了新的文献求助10
27秒前
林狗发布了新的文献求助10
28秒前
11发布了新的文献求助10
28秒前
29秒前
打打应助肉肉小白采纳,获得10
31秒前
JamesPei应助bct采纳,获得10
31秒前
尔尔发布了新的文献求助10
31秒前
Polymer72发布了新的文献求助200
32秒前
科研通AI2S应助曾医生采纳,获得10
32秒前
MchemG应助奋斗的雅柔采纳,获得20
34秒前
星辰大海应助呆萌沛蓝采纳,获得10
34秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397631
求助须知:如何正确求助?哪些是违规求助? 3006740
关于积分的说明 8822279
捐赠科研通 2693996
什么是DOI,文献DOI怎么找? 1475576
科研通“疑难数据库(出版商)”最低求助积分说明 682450
邀请新用户注册赠送积分活动 675884