Investigation on a sustainable composite method of glass microstructures fabrication—Electrochemical discharge milling and grinding (ECDM-G)

机械加工 研磨 材料科学 表面粗糙度 比能量 表面光洁度 响应面法 冶金 机械工程 复合材料 工程类 计算机科学 物理 量子力学 机器学习
作者
Tianbo Wang,Yong Liu,Kan Wang,Zhen Lv
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:387: 135788-135788 被引量:10
标识
DOI:10.1016/j.jclepro.2022.135788
摘要

Glass structures with microchannel morphology play an important role in the fields of biology, medicine and MEMS. The non-traditional machining methods currently used to machining glass have problems such as excessive energy consumption, poor sustainability, and harmful to operators and the environment. To achieve precision, efficient, green, sustainable production and save resources, a novel composite machining method of electrochemical discharge milling and grinding (ECDM-G) was proposed in this paper. Compared with tranditional electrochemical discharge machining, lower discharge energy is applied, and KH2PO4 solution is used as electrolyte instead of alkaline solution, thus realizing energy-saving and green machining. Compared with mechanical grinding, tool wear is reduced and the sustainability of machining is improved. In the theoretical part, the heat conduction process of electrochemical discharge was simulated and the softening effect of workpiece material was analyzed. Furthermore, the matching mathematical model between electrochemical discharge energy and material removal by grinding was established. So as to accurately control the energy and avoid waste. In the experiment part, the key parameters were determined through the Plackett-Burman experiment, and then the Box-Behnken experiment was conducted on the key parameters and the Response Surface Methodology (RSM) was used to obtain the optimal combination of machining parameters. Compared with mechanical grinding, the problems of edge collapse and breakage are solved. The overcut is reduced by 35.1%, the edge damage is reduced by 42.2%, the surface morphology is improved and the surface roughness value is reduced by 47.7%. Compared with ECDM, the problems of heat affected zone and thermal defects are solved. The overcut is reduced by 49.1%, the edge damage is reduced by 56.6%, the surface feather morphology is removed and the surface roughness value is reduced by 74.9%. The machining stability and consistency of ECDM-G method are analyzed by machining array microchannels. Finally, with the optimized machining parameters, the microfluidic chip with typical microchannel structure was fabricated by ECDM-G, and the tool electrode has no severe wear after machining the long path complex structure, which proves that ECDM-G can be an energy-saving, sustainable and effective method for machining precision glass microstructures with high quality, and further shows that ECDM-G has industrial application prospects in the manufacturing of key biological and medical components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yi发布了新的文献求助10
2秒前
ya发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
诚心面包完成签到,获得积分10
6秒前
6秒前
唠叨的若冰完成签到,获得积分10
6秒前
哎嘤斯坦完成签到,获得积分10
6秒前
6秒前
ZYZ发布了新的文献求助10
7秒前
zzz发布了新的文献求助10
8秒前
9秒前
9秒前
李健应助yi采纳,获得10
10秒前
拓跋涵易发布了新的文献求助10
10秒前
母广明发布了新的文献求助10
11秒前
12秒前
专注灵凡发布了新的文献求助10
13秒前
14秒前
李健应助蔡蔡不菜菜采纳,获得10
14秒前
15秒前
16秒前
sjhz发布了新的文献求助10
17秒前
刘星宇发布了新的文献求助10
17秒前
17秒前
17秒前
叙温雨发布了新的文献求助10
18秒前
呜呜呜呜呜呜完成签到,获得积分10
18秒前
19秒前
江江完成签到 ,获得积分10
20秒前
chant完成签到 ,获得积分20
20秒前
Fall完成签到,获得积分10
21秒前
21秒前
单纯夏烟发布了新的文献求助10
22秒前
阿荷荷发布了新的文献求助30
24秒前
高大凌寒发布了新的文献求助200
24秒前
chant发布了新的文献求助10
24秒前
Amy发布了新的文献求助50
25秒前
顾安安发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149477
求助须知:如何正确求助?哪些是违规求助? 2800533
关于积分的说明 7840390
捐赠科研通 2458038
什么是DOI,文献DOI怎么找? 1308241
科研通“疑难数据库(出版商)”最低求助积分说明 628460
版权声明 601706