光降解
化学
磷酸三苯酯
降级(电信)
动力学
过氧化氢
紫外线
傅里叶变换红外光谱
光化学
二氧化钛
有机化学
光催化
化学工程
催化作用
材料科学
工程类
阻燃剂
物理
电信
量子力学
光电子学
计算机科学
作者
Ziwen Xu,Hongling Yin,Yuanming Xiong,Jiaojiao Song,Yanjiang Qiao
出处
期刊:PubMed
日期:2022-11-08
卷期号:43 (11): 4992-4999
标识
DOI:10.13227/j.hjkx.202205319
摘要
As a type of emerging pollutant of concern, organophosphate esters (OPEs) have posed a moderate risk to the remote Antarctic waters. Triphenyl phosphate (TPHP) is a common type of OPEs in water, which has been proven to have toxic effects, bioaccumulation, and amplification effects and pose a great threat to the environment and human health. Fourier transform infrared spectroscopy (FT-IR) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to investigate the degradation process of TPHP in three advanced oxidation processes (UV-AOPs), including ultraviolet-hydrogen peroxide (UV-H2O2), ultraviolet-titanium dioxide (UV-TiO2), and ultraviolet-persulfate (UV-PS) systems. This was the first instance of using FT-IR for the online observation of the change in infrared characteristic peaks in the degradation process of TPHP, and its degradation reaction kinetics, photodegradation products, and degradation pathways were analyzed. The results showed that TPHP could be effectively degraded under UV-H2O2, UV-TiO2, and UV-PS systems, and the photodegradation half-lives were 74, 150, and 89 min, respectively. The UV-H2O2 system had the best degradation effect on TPHP. Additionally, the degradation reactions of TPHP in three systems conformed to the first-order kinetics. When the concentration of H2O2 was 0-0.097 mol·L-1, the increase in H2O2 concentration promoted the degradation of TPHP, and when the concentration of TiO2 was 0-0.013 mol·L-1, the increase in TiO2 concentration promoted the degradation of TPHP. The photodegradation pathway of TPHP mainly included the P-O-C bond breaking, the C-H bond cleavage of the benzene ring structure and the hydrolysis reaction of TPHP. The UV-H2O2 system was used to degrade OPEs in the environmental water of Chengdu, and it was found that the removal rate of TPHP was 66% when the water samples of the park landscape water were degraded for 60 min.
科研通智能强力驱动
Strongly Powered by AbleSci AI