Application of logistic regression, support vector machine and random forest on the effects of titanium dioxide nanoparticles using macroalgae in treatment of certain risk factors associated with kidney injuries

支持向量机 随机森林 逻辑回归 二氧化钛 急性肾损伤 机器学习 计算机科学 医学 重症监护医学 人工智能 算法 材料科学 内科学 冶金
作者
Jianxin Tu,Lingzhen Hu,Khidhair Jasim Mohammed,Binh Nguyen Le,Peirong Chen,Elimam Ali,H. Elhosiny Ali,Li Sun
出处
期刊:Environmental Research [Elsevier BV]
卷期号:220: 115167-115167 被引量:10
标识
DOI:10.1016/j.envres.2022.115167
摘要

The use of titanium dioxide (TiO2) nanoparticles in many biological and technical domains is on the rise. There hasn't been much research on the toxicity of titanium dioxide nanoparticles in biological systems, despite their ubiquitous usage. In the current investigation, samples were exposed to various dosages of TiO2 nanoparticles for 4 days, 1 month, and 2 months following treatment. ICP-AES was used to dose TiO2 into the tissues, and the results showed that the kidney had a significant TiO2 buildup. On the other hand, apoptosis of renal tubular cells is one of the most frequent cellular processes contributing to kidney disease (KD). Nevertheless, the impact of macroalgal seaweed extract on KD remains undetermined. In this work, machine learning (ML) approaches have been applied to develop prediction algorithms for acute kidney injury (AKI) by use of titanium dioxide and macroalgae in hospitalized patients. Fifty patients with (AKI) and 50 patients (non-AKI group) have been admitted and considered. Regarding demographic data, and laboratory test data as input parameters, support vector machine (SVM), and random forest (RF) are utilized to build models of AKI prediction and compared to the predictive performance of logistic regression (LR). Due to its strong antioxidant and anti-inflammatory powers, the current research ruled out the potential of using G. oblongata red macro algae as a source for a variety of products for medicinal uses. Despite a high and fast processing of algorithms, logistic regression showed lower overfitting in comparison to SVM, and Random Forest. The dataset is subjected to algorithms, and the categorization of potential risk variables yields the best results. AKI samples showed significant organ defects than non-AKI ones. Multivariate LR indicated that lymphocyte, and myoglobin (MB) ≥ 1000 ng/ml were independent risk parameters for AKI samples. Also, GCS score (95% CI 1.4–8.3 P = 0.014) were the risk parameters for 60-day mortality in samples with AKI. Also, 90-day mortality in AKI patients was significantly high (P < 0.0001). In compared to the control group, there were no appreciable changes in the kidney/body weight ratio or body weight increases. Total thiol levels in kidney homogenate significantly decreased, and histopathological analysis confirmed these biochemical alterations. According to the results, oral TiO2 NP treatment may cause kidney damage in experimental samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lan199623发布了新的文献求助10
1秒前
kkk发布了新的文献求助10
2秒前
2秒前
2秒前
欧阳振应助沉寂的希望采纳,获得10
2秒前
爱逃不过初心完成签到,获得积分10
2秒前
王多肉完成签到,获得积分10
3秒前
福star高照完成签到,获得积分10
4秒前
4秒前
5秒前
zydaphne完成签到 ,获得积分10
5秒前
6秒前
6秒前
suiFeng完成签到,获得积分10
6秒前
OSASACB完成签到 ,获得积分10
6秒前
syfsyfsyf完成签到,获得积分20
7秒前
LZH完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
Yellue完成签到,获得积分10
8秒前
9秒前
饱满的鑫发布了新的文献求助10
9秒前
9秒前
LZH发布了新的文献求助10
9秒前
简单白风完成签到 ,获得积分10
9秒前
10秒前
10秒前
数学情缘发布了新的文献求助10
10秒前
右右发布了新的文献求助10
11秒前
11秒前
ouou发布了新的文献求助10
12秒前
12秒前
天真囧发布了新的文献求助10
13秒前
完美背包完成签到,获得积分10
13秒前
Tireastani应助hukun100采纳,获得30
13秒前
我先睡了发布了新的文献求助30
13秒前
萱1988发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600