Application of logistic regression, support vector machine and random forest on the effects of titanium dioxide nanoparticles using macroalgae in treatment of certain risk factors associated with kidney injuries

支持向量机 随机森林 逻辑回归 二氧化钛 急性肾损伤 机器学习 计算机科学 医学 重症监护医学 人工智能 算法 材料科学 内科学 冶金
作者
Jianxin Tu,Lingzhen Hu,Khidhair Jasim Mohammed,Binh Nguyen Le,Peirong Chen,Elimam Ali,H. Elhosiny Ali,Li Sun
出处
期刊:Environmental Research [Elsevier]
卷期号:220: 115167-115167 被引量:10
标识
DOI:10.1016/j.envres.2022.115167
摘要

The use of titanium dioxide (TiO2) nanoparticles in many biological and technical domains is on the rise. There hasn't been much research on the toxicity of titanium dioxide nanoparticles in biological systems, despite their ubiquitous usage. In the current investigation, samples were exposed to various dosages of TiO2 nanoparticles for 4 days, 1 month, and 2 months following treatment. ICP-AES was used to dose TiO2 into the tissues, and the results showed that the kidney had a significant TiO2 buildup. On the other hand, apoptosis of renal tubular cells is one of the most frequent cellular processes contributing to kidney disease (KD). Nevertheless, the impact of macroalgal seaweed extract on KD remains undetermined. In this work, machine learning (ML) approaches have been applied to develop prediction algorithms for acute kidney injury (AKI) by use of titanium dioxide and macroalgae in hospitalized patients. Fifty patients with (AKI) and 50 patients (non-AKI group) have been admitted and considered. Regarding demographic data, and laboratory test data as input parameters, support vector machine (SVM), and random forest (RF) are utilized to build models of AKI prediction and compared to the predictive performance of logistic regression (LR). Due to its strong antioxidant and anti-inflammatory powers, the current research ruled out the potential of using G. oblongata red macro algae as a source for a variety of products for medicinal uses. Despite a high and fast processing of algorithms, logistic regression showed lower overfitting in comparison to SVM, and Random Forest. The dataset is subjected to algorithms, and the categorization of potential risk variables yields the best results. AKI samples showed significant organ defects than non-AKI ones. Multivariate LR indicated that lymphocyte, and myoglobin (MB) ≥ 1000 ng/ml were independent risk parameters for AKI samples. Also, GCS score (95% CI 1.4–8.3 P = 0.014) were the risk parameters for 60-day mortality in samples with AKI. Also, 90-day mortality in AKI patients was significantly high (P < 0.0001). In compared to the control group, there were no appreciable changes in the kidney/body weight ratio or body weight increases. Total thiol levels in kidney homogenate significantly decreased, and histopathological analysis confirmed these biochemical alterations. According to the results, oral TiO2 NP treatment may cause kidney damage in experimental samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
默默的棒棒糖完成签到 ,获得积分10
3秒前
3秒前
SONG关注了科研通微信公众号
3秒前
4秒前
ding应助呆头采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
sutharsons应助科研通管家采纳,获得30
4秒前
axin应助科研通管家采纳,获得10
4秒前
terence应助科研通管家采纳,获得30
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
sutharsons应助科研通管家采纳,获得30
4秒前
852应助科研通管家采纳,获得10
4秒前
hh应助科研通管家采纳,获得10
4秒前
sun发布了新的文献求助10
5秒前
5秒前
zhu完成签到,获得积分10
5秒前
酷波er应助缚大哥采纳,获得10
6秒前
李健应助明理雨筠采纳,获得10
6秒前
wang发布了新的文献求助10
8秒前
木头人给step_stone的求助进行了留言
8秒前
魏伯安完成签到,获得积分10
9秒前
朴素尔岚发布了新的文献求助10
10秒前
科研通AI5应助nextconnie采纳,获得10
10秒前
务实的犀牛完成签到,获得积分10
11秒前
11秒前
Blue_Pig发布了新的文献求助10
11秒前
12秒前
科研通AI2S应助橙子fy16_采纳,获得10
13秒前
LGJ完成签到,获得积分10
13秒前
wang完成签到,获得积分10
15秒前
16秒前
17秒前
脑洞疼应助Blue_Pig采纳,获得10
19秒前
20秒前
Akim应助危机的尔蝶采纳,获得10
21秒前
SONG发布了新的文献求助50
21秒前
明理雨筠发布了新的文献求助10
22秒前
小刘一定能读C9博完成签到 ,获得积分10
23秒前
1097完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849