亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An explainable intelligent algorithm for the multiple performance prediction of cement-based grouting materials

超参数 超参数优化 抗压强度 均方误差 计算机科学 混合(物理) 水泥 机器学习 预测建模 算法 数学 材料科学 统计 支持向量机 复合材料 量子力学 物理
作者
Weijian Zhao,Siyuan Feng,Jianxiang Liu,Bocaho Sun
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:366: 130146-130146 被引量:8
标识
DOI:10.1016/j.conbuildmat.2022.130146
摘要

Cement-based grouting material, distinguished by excellent fluidity and high strength, is widely used in the field of construction reinforcement, and anchoring of restraints. Owing to the high-performance requirements and complicated influencing factors of grouting material, the design of the mixing proportion has been challenging. This study proposes a machine learning (ML) based algorithmic framework integrating prediction, interpretation, and automatic hyperparameter tuning to identify the complex potential relationships between the mixing proportion parameters on the compressive strength and fluidity of cement-based grouting materials. The 442 compressive strength data and 217 fluidity data derived from both published literatures and laboratory experiments were collected to build a dataset for demonstrating the predictive performance of the ML models. The results indicated that the hyperparameter tuning technique via Bayesian Optimisation (BO) can significantly improve the time efficiency compared to grid search, reducing time consumption from 8000 s to 197 s with comparable accuracy. The optimal prediction results were obtained based on the XGBoost model with R2 = 0.93, RMSE = 7.37 for compressive strength, and R2 = 0.92, RMSE = 16.33 for fluidity. The SHapley Additive exPlainations (SHAP) is introduced to interpret the evaluation results and the influence of the various mix factors on grouting material from both global(model) and local(instance) perspectives. The suggested model can be seen as a function of influential input variables that help engineers conduct a rapid assessment and then in turn to optimize the design of the mixture proportion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
8秒前
15秒前
今后应助科研小白包采纳,获得10
16秒前
张清发布了新的文献求助10
21秒前
科研小白包完成签到,获得积分10
24秒前
MchemG完成签到,获得积分0
1分钟前
1分钟前
1分钟前
Herry发布了新的文献求助10
1分钟前
1分钟前
所所应助Herry采纳,获得10
2分钟前
春日奶黄包完成签到 ,获得积分10
2分钟前
铜锣湾新之助完成签到 ,获得积分10
2分钟前
3分钟前
Jasper应助古月学术采纳,获得30
3分钟前
Herry发布了新的文献求助10
3分钟前
科研通AI5应助Herry采纳,获得10
3分钟前
3分钟前
古月学术发布了新的文献求助30
3分钟前
1341502209发布了新的文献求助50
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
古月学术完成签到,获得积分20
4分钟前
Kevin完成签到,获得积分10
4分钟前
5分钟前
5分钟前
小白菜完成签到,获得积分10
5分钟前
过时的小土豆完成签到,获得积分10
5分钟前
zartusht完成签到,获得积分10
6分钟前
6分钟前
1341502209发布了新的文献求助50
6分钟前
Herry发布了新的文献求助10
6分钟前
烟花应助Herry采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
大模型应助张清采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544416
求助须知:如何正确求助?哪些是违规求助? 3121608
关于积分的说明 9348056
捐赠科研通 2819895
什么是DOI,文献DOI怎么找? 1550514
邀请新用户注册赠送积分活动 722559
科研通“疑难数据库(出版商)”最低求助积分说明 713273