Ionic Strength-Dependent Assembly of Polyelectrolyte-Nanoparticle Membranes via Interfacial Complexation at a Water–Water Interface

聚电解质 离子强度 化学工程 渗透 反离子 离子键合 纳米颗粒 化学 水溶液 材料科学 纳米技术 有机化学 聚合物 离子 工程类 生物化学
作者
Wilfredo Mendez-Ortiz,Kathleen J. Stebe,Daeyeon Lee
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (12): 21087-21097 被引量:11
标识
DOI:10.1021/acsnano.2c08916
摘要

Complexation between oppositely charged nanoparticles (NPs) and polyelectrolytes (PEs) is a scalable approach to assemble functional, stimuli-responsive membranes. Complexation at interfaces of aqueous two-phase systems (ATPSs) has emerged as a powerful method to assemble these functional structures. Membranes formed at these interfaces can grow continuously to thicknesses approaching several millimeters and display a high degree of tunability via modification of solution properties such as ionic strength. To identify the membrane assembly mechanism, we study interfacial assembly in a prototypical dextran/PEG ATPS, in which silica (SiO2) NPs suspended in the PEG phase undergo interfacial complexation with poly(diallyldimethylammonium chloride) (PDADMAC) supplied in the dextran phase. Using a microfluidic device that facilitates sequential insertion of fluorescent and nonfluorescent PDADMAC, we observe a transition in the membrane growth mechanism with ionic strength. In the absence of added salt ([NaCl] = 0 mM) PDADMAC chains permeate through the existing membrane to complex with NPs on the PEG side of the membrane, leading to the formation of well-stratified structures. At elevated ionic strength ([NaCl] = 500 mM), this permeation mechanism is lost. Rather, the complexing species incorporate uniformly across the membrane. We attribute this transition to a rapid exchange of PE-counterion, NP-counterion, and PE/NP binding sites facilitated by an increase in extrinsically compensated charged groups on the NPs and PEs at high salinity. These PDADMAC/SiO2 NP membranes have tremendous potential for the formation of functional membranes, offering control over the internal structure and serving as an ideal system for the generation of targeted release systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
浮游应助djbj2022采纳,获得10
3秒前
7秒前
优秀笑柳完成签到,获得积分10
7秒前
丘比特应助trussie采纳,获得10
7秒前
Cherish完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Owen应助马上飞上宇宙采纳,获得10
9秒前
善学以致用应助jc采纳,获得10
9秒前
11秒前
划分完成签到,获得积分10
11秒前
111发布了新的文献求助10
12秒前
fanfan完成签到,获得积分10
13秒前
周久完成签到 ,获得积分10
13秒前
ada发布了新的文献求助10
14秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
15秒前
彭tiantian完成签到 ,获得积分10
15秒前
17秒前
lucy发布了新的文献求助10
17秒前
19秒前
爱放屁的马邦德完成签到,获得积分10
19秒前
simdows发布了新的文献求助10
20秒前
Rain完成签到,获得积分10
21秒前
22秒前
lzcccccc完成签到,获得积分10
23秒前
ljc完成签到 ,获得积分10
24秒前
25秒前
科研通AI6应助纸箱采纳,获得10
26秒前
26秒前
original完成签到,获得积分10
27秒前
一向年光无限身完成签到,获得积分10
27秒前
浮游应助大李不说话采纳,获得10
29秒前
30秒前
日出完成签到,获得积分10
31秒前
Twonej举报lilianan求助涉嫌违规
32秒前
32秒前
七星茶发布了新的文献求助10
33秒前
无花果应助Wells采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741