See hear now: is audio-visual QoE now just a fusion of audio and video metrics?

计算机科学 水准点(测量) 音质 语音识别 质量(理念) 视听 视频质量 主观视频质量 机器学习 预测建模 质量评定 人工智能 多媒体 图像质量 公制(单位) 工程类 可靠性工程 评价方法 哲学 运营管理 大地测量学 认识论 图像(数学) 地理
作者
Helard Becerra Martinez,Andrew Hines,Mylène C. Q. Farias
标识
DOI:10.1109/qomex55416.2022.9900891
摘要

Single-modal audio/speech and video quality models have reached high levels of performance. Although traditional algorithms are still preferred for many practical applications, advances in machine learning (ML) and deep learning techniques have exceeded their performance in several scientific comparisons. However, audio-visual (AV) models have received signifi-cantly less attention and development. Despite the acknowledged challenge that multimodal interaction poses to the AV problem, traditional AV models generally rely on simple fusion techniques of individual audio and video predictions. Consequently, the impact of recent advances in single-modal quality assessment models on SOTA (state-of-the-art) AV quality models merits attention. This paper presents a revised and updated benchmark for AV quality assessment with particular focus on new speech quality metrics. Three AV datasets were used to test audio, video, and AV quality metrics. For audio and video, the best performing metrics were selected to build simple late-fusion models using their raw predictions. The fused models were then compared to the SOTA AV models. Results show that a simple fusion strategy produces accurate AV quality predictions (LCC and SCC greater than 0.90) with low error rates (RMSE lower than 0.33). These results highlight the influence of advances in speech quality for AV quality assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzz发布了新的文献求助30
刚刚
刚刚
科研通AI6应助傲娇的以松采纳,获得30
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
不周山修猫完成签到,获得积分10
3秒前
4秒前
5秒前
小熊饼干完成签到,获得积分10
5秒前
5秒前
张钊于发布了新的文献求助10
5秒前
Lavender完成签到,获得积分10
6秒前
王嘉尔完成签到,获得积分10
6秒前
6秒前
REBECCA完成签到 ,获得积分10
8秒前
Owen应助Guko采纳,获得10
8秒前
莉丽发布了新的文献求助10
9秒前
9秒前
9秒前
打打应助玄易采纳,获得10
10秒前
10秒前
11秒前
充电宝应助Lavender采纳,获得10
11秒前
星空发布了新的文献求助10
11秒前
Owen应助fddd采纳,获得10
11秒前
11秒前
ZAJ发布了新的文献求助10
12秒前
所所应助King采纳,获得10
12秒前
13秒前
浮游应助刘老哥6采纳,获得10
14秒前
14秒前
TS完成签到,获得积分10
14秒前
max发布了新的文献求助10
15秒前
隐形曼青应助晓竹采纳,获得10
15秒前
Arrebol完成签到,获得积分10
16秒前
充电宝应助boging采纳,获得10
16秒前
英俊的铭应助JiaY采纳,获得10
16秒前
17秒前
霸气的半烟完成签到,获得积分20
18秒前
稳重的皮皮虾关注了科研通微信公众号
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465317
求助须知:如何正确求助?哪些是违规求助? 4569688
关于积分的说明 14320442
捐赠科研通 4496086
什么是DOI,文献DOI怎么找? 2463069
邀请新用户注册赠送积分活动 1452085
关于科研通互助平台的介绍 1427268