Priori knowledge-based multi-task wavelet network for guided wave interfacial debonding detection in RC structures

概化理论 先验与后验 任务(项目管理) 小波 计算机科学 人工智能 模式识别(心理学) 工程类 系统工程 数学 统计 认识论 哲学
作者
Zhiwei Liao,Pizhong Qiao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:1
标识
DOI:10.1177/14759217241252485
摘要

Reinforced concrete (RC) has been widely used in infrastructure construction. Interfacial debonding between concrete and reinforcing bars, which is one of the most serious causes of structural failure, has always been a focus of research. In this paper, a novel deep learning-based guided wave analysis framework, termed the Priori Knowledge-based Multi-task Wavelet Network, is proposed for detecting interfacial debonding in RC structures. An end-to-end structure is utilized to surmount the challenges of manual feature uncertainty and dependence on expert knowledge inherent in traditional methods. Incorporating the multi-task learning principles, a deep learning network with branching structures is designed to simultaneously recognize, localize, and quantify the size of interfacial debonding. Damage-sensitive and task-invariant features of guided wave signals are extracted automatically based on supervised learning. To improve the noise resilience the proposed framework incorporates the environmental adaptive training based on data augmentation and continuous wavelet transform. Both the numerical and real structures of RC beams containing with various interfacial debonding scenarios are established to evaluate the debonding detection performance of the framework. Evaluation results demonstrate that the framework exhibits superior interfacial debonding detection capability and enhanced generalizability to varying levels of external interference compared to baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
3秒前
iking666完成签到,获得积分10
3秒前
孤灯剑客完成签到,获得积分10
5秒前
7秒前
11220发布了新的文献求助10
7秒前
7秒前
小小Li发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
Firo完成签到,获得积分10
11秒前
结实乐荷完成签到,获得积分10
11秒前
11秒前
zeannezg发布了新的文献求助10
12秒前
jjn完成签到,获得积分10
12秒前
药膳干发布了新的文献求助10
14秒前
碧蓝曼冬发布了新的文献求助10
14秒前
彭于晏应助默默寒珊采纳,获得10
14秒前
14秒前
爆米花应助明理夏槐采纳,获得10
15秒前
16秒前
万能图书馆应助酷酷梦旋采纳,获得10
17秒前
18秒前
tjzbw完成签到,获得积分10
18秒前
李健应助ncycg采纳,获得10
18秒前
18秒前
HELIXIA发布了新的文献求助10
18秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
21秒前
23秒前
qwe发布了新的文献求助10
23秒前
24秒前
sll完成签到 ,获得积分10
24秒前
CWY关闭了CWY文献求助
24秒前
li完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039