Priori knowledge-based multi-task wavelet network for guided wave interfacial debonding detection in RC structures

概化理论 先验与后验 任务(项目管理) 小波 计算机科学 人工智能 模式识别(心理学) 工程类 系统工程 数学 统计 认识论 哲学
作者
Zhiwei Liao,Pizhong Qiao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:1
标识
DOI:10.1177/14759217241252485
摘要

Reinforced concrete (RC) has been widely used in infrastructure construction. Interfacial debonding between concrete and reinforcing bars, which is one of the most serious causes of structural failure, has always been a focus of research. In this paper, a novel deep learning-based guided wave analysis framework, termed the Priori Knowledge-based Multi-task Wavelet Network, is proposed for detecting interfacial debonding in RC structures. An end-to-end structure is utilized to surmount the challenges of manual feature uncertainty and dependence on expert knowledge inherent in traditional methods. Incorporating the multi-task learning principles, a deep learning network with branching structures is designed to simultaneously recognize, localize, and quantify the size of interfacial debonding. Damage-sensitive and task-invariant features of guided wave signals are extracted automatically based on supervised learning. To improve the noise resilience the proposed framework incorporates the environmental adaptive training based on data augmentation and continuous wavelet transform. Both the numerical and real structures of RC beams containing with various interfacial debonding scenarios are established to evaluate the debonding detection performance of the framework. Evaluation results demonstrate that the framework exhibits superior interfacial debonding detection capability and enhanced generalizability to varying levels of external interference compared to baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助limyao采纳,获得10
刚刚
Steve发布了新的文献求助10
刚刚
熊黛林完成签到,获得积分10
刚刚
wulififi发布了新的文献求助10
2秒前
xiuxiuzhang发布了新的文献求助10
4秒前
可爱的小朋友完成签到,获得积分10
5秒前
FashionBoy应助shenhongru采纳,获得10
5秒前
QQQ完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
斯文败类应助WEAWEA采纳,获得10
9秒前
9秒前
10秒前
科研通AI2S应助如意的冰双采纳,获得10
11秒前
能干的问晴完成签到,获得积分10
12秒前
miemie66发布了新的文献求助10
12秒前
香芋完成签到 ,获得积分10
12秒前
nihao发布了新的文献求助10
12秒前
12秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
韩野发布了新的文献求助10
17秒前
山海完成签到,获得积分10
17秒前
penpen发布了新的文献求助10
17秒前
18秒前
张芃尧完成签到,获得积分20
19秒前
天天快乐应助CHEN采纳,获得10
19秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
SciGPT应助hearz采纳,获得10
21秒前
21秒前
孙元应助zzz采纳,获得10
22秒前
22秒前
元谷雪发布了新的文献求助10
23秒前
英姑应助Vizz采纳,获得10
23秒前
起个名真难完成签到,获得积分10
23秒前
幻影完成签到 ,获得积分10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233