亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Priori knowledge-based multi-task wavelet network for guided wave interfacial debonding detection in RC structures

概化理论 先验与后验 任务(项目管理) 小波 计算机科学 人工智能 模式识别(心理学) 工程类 系统工程 数学 统计 认识论 哲学
作者
Zhiwei Liao,Pizhong Qiao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:1
标识
DOI:10.1177/14759217241252485
摘要

Reinforced concrete (RC) has been widely used in infrastructure construction. Interfacial debonding between concrete and reinforcing bars, which is one of the most serious causes of structural failure, has always been a focus of research. In this paper, a novel deep learning-based guided wave analysis framework, termed the Priori Knowledge-based Multi-task Wavelet Network, is proposed for detecting interfacial debonding in RC structures. An end-to-end structure is utilized to surmount the challenges of manual feature uncertainty and dependence on expert knowledge inherent in traditional methods. Incorporating the multi-task learning principles, a deep learning network with branching structures is designed to simultaneously recognize, localize, and quantify the size of interfacial debonding. Damage-sensitive and task-invariant features of guided wave signals are extracted automatically based on supervised learning. To improve the noise resilience the proposed framework incorporates the environmental adaptive training based on data augmentation and continuous wavelet transform. Both the numerical and real structures of RC beams containing with various interfacial debonding scenarios are established to evaluate the debonding detection performance of the framework. Evaluation results demonstrate that the framework exhibits superior interfacial debonding detection capability and enhanced generalizability to varying levels of external interference compared to baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大医仁心完成签到 ,获得积分10
1秒前
CipherSage应助Penny采纳,获得10
3秒前
14秒前
Penny完成签到,获得积分10
14秒前
Penny发布了新的文献求助10
18秒前
盈盈发布了新的文献求助10
20秒前
woxinyouyou完成签到,获得积分0
27秒前
meeteryu完成签到,获得积分10
29秒前
SciGPT应助盈盈采纳,获得10
31秒前
持卿应助科研通管家采纳,获得10
51秒前
持卿应助科研通管家采纳,获得10
51秒前
持卿应助科研通管家采纳,获得10
51秒前
持卿应助科研通管家采纳,获得10
52秒前
狂野丹翠应助科研通管家采纳,获得10
52秒前
Wone3完成签到 ,获得积分10
53秒前
knight7m完成签到 ,获得积分10
56秒前
哈哈完成签到 ,获得积分10
1分钟前
Alisha完成签到,获得积分10
1分钟前
1分钟前
1分钟前
jjy发布了新的文献求助30
1分钟前
jjy完成签到,获得积分10
1分钟前
duoduo完成签到,获得积分10
2分钟前
2分钟前
wl发布了新的文献求助20
2分钟前
Kun应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得20
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
CC完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
程晓研完成签到 ,获得积分10
4分钟前
lovelife完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
烟花应助清秀翠风采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160