Experimental investigations to assess surface fatigue failure in rolling contact bearing

方位(导航) 曲面(拓扑) 材料科学 结构工程 疲劳试验 法律工程学 工程类 计算机科学 数学 几何学 人工智能
作者
Santhosh Kumar Kamarapu,M. Amarnath,Perumalla Sateesh Kumar,Deepak Kumar Prasad,B. S. Ajay Vardhaman
标识
DOI:10.1177/14644207241254448
摘要

Rolling element bearings are the most important components in almost all rotating machines. These bearings are often subjected to repetitive load cycles at different operating conditions. Excessive loads, speeds, and improper operating conditions lead to the propagation of defects on their load-bearing surfaces, thereby causing a negative impact on the performance of rotating machines. This paper presents the results of experimental investigations to assess wear propagation in roller bearings using lubricant degradation, vibration, and statistical parameter analysis methods. A roller bearing setup was developed in the laboratory, and the test bearing (NJ 307E) was subjected to fatigue tests over a period of 900 h. The bearing was operated at a speed and radial load of 800 rpm and 1 kN, respectively. The film thickness analysis revealed a transition in lubrication regimes during 600–900 h of operation. Grease structure degradation and oxidation analyses were carried out using scanning electron microscope images and the Fourier transform infrared radiation technique. Further, the vibration signals are extracted from the bearing housing at regular intervals. Using the fast Fourier transform technique, these vibration signals were used to analyze bearing fault frequencies to highlight the faults developed on bearing contact surfaces. The statistical features of vibration signals such as root mean square, kurtosis, and crest factor were used to assess the severity of wear propagated on the bearing contact surfaces. Integrating tribological and vibration parameter analysis techniques provided a reliable assessment of surface fatigue wear propagated on the roller-bearing contact surfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣忆完成签到 ,获得积分10
刚刚
复原乳完成签到,获得积分10
刚刚
1秒前
四火发布了新的文献求助10
1秒前
Rui发布了新的文献求助10
1秒前
白宝宝北北白应助dfggg采纳,获得10
2秒前
阳光海云发布了新的文献求助50
2秒前
小胖鱼关注了科研通微信公众号
2秒前
昏睡的眼神完成签到 ,获得积分10
2秒前
NexusExplorer应助南乔采纳,获得10
2秒前
杜嘟嘟发布了新的文献求助10
2秒前
完美世界应助April采纳,获得10
3秒前
提手旁辰完成签到,获得积分20
3秒前
能干的邹完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
酒九完成签到,获得积分10
4秒前
刺槐完成签到,获得积分10
4秒前
Owen应助LLKK采纳,获得30
6秒前
6秒前
6秒前
7秒前
苏鱼完成签到 ,获得积分10
7秒前
恋空完成签到 ,获得积分10
7秒前
曲终人散完成签到,获得积分10
8秒前
wu发布了新的文献求助10
8秒前
wintercyan完成签到,获得积分10
8秒前
10秒前
10秒前
妮儿发布了新的文献求助10
10秒前
10秒前
MADKAI发布了新的文献求助10
11秒前
insane完成签到,获得积分10
11秒前
云儿发布了新的文献求助20
11秒前
Jasper应助哲999采纳,获得10
11秒前
wanci应助拟拟采纳,获得10
12秒前
王超超完成签到,获得积分10
12秒前
12秒前
圈圈发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740