Advanced microstructural characterization in high-strength steels via machine learning-enhanced high-speed nanoindentation and EBSD mapping

纳米压痕 材料科学 电子背散射衍射 微观结构 马氏体 表征(材料科学) 晶界 奥氏体 冶金 纳米技术
作者
Federico Bruno,Georgios Konstantoupoulos,Edoardo Rossi,Gianluca Fiore,Costas A. Charitidis,Marco Sebastiani,Luca Belforte,Mauro Palumbo
出处
期刊:Materials today communications [Elsevier BV]
卷期号:39: 109192-109192 被引量:2
标识
DOI:10.1016/j.mtcomm.2024.109192
摘要

This research investigates the nanoscopic features of Advanced High-Strength Steels (AHSS) through a bottom-up approach employing high-speed nanoindentation mapping (HSNM) to elucidate structure-property relationships. The influence of grain boundaries on nanomechanical properties was documented, highlighting the challenge of SEM-EBSD analysis in differentiating phases with identical crystal structures (BCC, FCC, etc.). Integrating SEM-EBSD with HSNM in the same region of interest is essential for detailed insights into phase/microstructure distribution and accurate grain boundary identification. A modular four-step analysis protocol, designed and validated on ferritic-bainitic TRIP steels (TBF), leverages machine learning-enhanced HSNM for significant advancements in AHSS design. The initial phase involves the application of the expectation-maximization algorithm for probability distribution fitting of HSNM data, deriving primary mechanical phase statistics. This exclusively facilitates the correlation of elastic modulus and hardness for each phase/microstructure using nanoindentation data. Further refinement of phase/microstructure to mechanical property correlations was achieved through a supervised machine learning approach, ensuring precise association between EBSD and nanoindentation data. This includes detailed image analysis and clustering of nanoindentation data, enhancing the precision in phase recognition. This methodology addresses the critical challenges in developing 3rd Generation AHSS, aiming to fill the gap in accurately identifying and quantifying phases such as martensite, austenite, bainite, and ferrite, thereby reducing classification and measurement uncertainties. The approach contributes to the fundamental understanding of AHSS microstructures and provides a scalable framework for the comprehensive characterization of structural materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马头消灭者完成签到,获得积分10
1秒前
愉快莫茗完成签到,获得积分20
2秒前
myb完成签到,获得积分10
2秒前
无名氏完成签到,获得积分10
4秒前
7秒前
研友_VZG7GZ应助罐装采纳,获得10
8秒前
yy发布了新的文献求助10
10秒前
10秒前
千秋梧完成签到,获得积分10
10秒前
英俊的铭应助投石问路采纳,获得20
11秒前
13秒前
14秒前
ljl12138发布了新的文献求助10
14秒前
带象发布了新的文献求助10
14秒前
幽默鱼完成签到,获得积分10
15秒前
naihe发布了新的文献求助10
16秒前
深情安青应助zanzan采纳,获得10
17秒前
17秒前
bhappy21完成签到,获得积分10
17秒前
昏睡的蟠桃应助井野浮采纳,获得80
18秒前
ltutui7完成签到,获得积分10
19秒前
欧小仙完成签到,获得积分10
19秒前
柒柒球发布了新的文献求助30
19秒前
情怀应助devil采纳,获得10
21秒前
带象完成签到,获得积分10
23秒前
李梦琦发布了新的文献求助10
23秒前
23秒前
科研通AI5应助yy采纳,获得10
23秒前
香辣鸡腿堡完成签到,获得积分10
24秒前
24秒前
24秒前
123发布了新的文献求助10
27秒前
英姑应助李梦琦采纳,获得10
27秒前
思源应助舒物采纳,获得10
30秒前
张张发布了新的文献求助10
30秒前
充电宝应助朴实初夏采纳,获得10
30秒前
毛豆应助罐装采纳,获得10
31秒前
33秒前
ChrisKim完成签到,获得积分10
33秒前
无花果应助旺旺采纳,获得10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730609
求助须知:如何正确求助?哪些是违规求助? 3275255
关于积分的说明 9991470
捐赠科研通 2990896
什么是DOI,文献DOI怎么找? 1641247
邀请新用户注册赠送积分活动 779636
科研通“疑难数据库(出版商)”最低求助积分说明 748331