Fluid entrapment during forced imbibition in a multidepth microfluidic chip with complex porous geometry

渗吸 诱捕 微流控 多孔性 机械 材料科学 多孔介质 几何学 复合材料 纳米技术 物理 数学 植物 医学 生物 发芽 外科
作者
Wenhai Lei,Wenbo Gong,Xukang Lu,Moran Wang
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:987 被引量:11
标识
DOI:10.1017/jfm.2024.358
摘要

Understanding and controlling fluid entrapment during forced imbibition in porous media is crucial for many natural and industrial applications. However, the microscale physics and macroscopic consequences of fluid entrapment in these geometric-confined porous media remain poorly understood. Here, we introduce a novel multidepth microfluidic chip, which can mitigate the depth confinement of traditional two-dimensional (2-D) microfluidic chips and mimic the wide pore size distribution as natural-occurring three-dimensional (3-D) porous media. Based on microfluidic experiments and direct numerical simulations, we observe the fluid-entrapment scenarios and elucidate the underlying complex interaction between geometric confinement, capillary number and wettability. Increasing depth variation can promote fluid entrapment, whereas increasing capillary number and contact angle yield the opposite effect, which seemingly contradicts conventional expectations in traditional 2-D microfluidic chips. The fluid-entrapment scenario in depth-variable microfluidic chips stems from microscopic interfacial phenomena, classified as snap-off and bypass events. We provide theoretical analyses of these pore-scale events and validate corresponding phase diagrams numerically. It is shown that increasing depth variation triggers snap-off and bypass events. Conversely, a higher capillary number suppresses snap-off events under strong imbibition, and an increased contact angle inhibits bypass events under imbibition. These macroscopic imbibition patterns in microfluidic porous media can be linked with these pore-scale events by improved dynamic pore-network models. Our findings bridge the understanding of forced imbibition between 2-D and 3-D porous media and provide design principles for newly engineered porous media with respect to their desired imbibition behaviours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小萌新完成签到,获得积分10
刚刚
咯咚发布了新的文献求助10
刚刚
刚刚
科研通AI6应助xuan采纳,获得80
1秒前
nwds发布了新的文献求助10
1秒前
1秒前
xiaoxiao关注了科研通微信公众号
1秒前
1秒前
bzlish发布了新的文献求助10
2秒前
汉堡包应助zzx采纳,获得10
2秒前
求助文献完成签到,获得积分20
3秒前
mark完成签到,获得积分10
3秒前
酷波er应助甜甜醉波采纳,获得10
4秒前
烟花应助陈志强采纳,获得10
4秒前
4秒前
洪晖阳完成签到,获得积分10
5秒前
莫筱铭发布了新的文献求助10
5秒前
momeak发布了新的文献求助10
6秒前
Akim应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
123应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
汤飞飞完成签到,获得积分10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
asdfzxcv应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
123应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
欢呼乘风应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
123应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
8秒前
wocao完成签到 ,获得积分10
8秒前
希望天下0贩的0应助guozi采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858