Electrochemiluminescence enhanced by molecular engineering linear π-conjugated polymer: An ingenious ECL emitter for the construction of exosome sensing platform
Linear π-conjugated polymers (LCPs) with π-electron conjugation system have many remarkable optical characteristics such as fluorescence and electrochemiluminescence (ECL). However, the extremely strong interchain interaction and π-π stacking limit the luminescence efficiency. In this work, 1H-1,2,4-triazole-3,5-diamine was chosen as the polymer monomer and reacted with terephthalaldehyde via simple Schiff base condensation to synthesize LCPs. Subsequently, molecular engineering strategy was adopted to construct zirconium-based LCPs (MLCPs), which not only prevented π-π stacking but also ensured that extended π-coupling was maintained in the LCPs, thus effectively promoting charge transport and achieving strong luminescence. Second, the coreactant polyethyleneimine (PEI) was assembled onto the MLCPs (MLCPs@PEI) to further promote the emission of ECL. To further explore the potential of the obtained MLCPs@PEI as emerging ECL emitter, colorectal cancer exosome was chosen as model biomarker, and an innovative ECL ratiometric system based on MLCPs@PEI and luminol was designed to improve the validity and accuracy of the sensors. This research provides a fresh nanoplatform for exosome detection and broadens the application of LCPs in ECL immunoassay.