A review of advancements in theoretical simulation of oxygen reduction reaction and oxygen evolution reaction single-atom catalysts

氧还原反应 催化作用 氧原子 氧气 Atom(片上系统) 还原(数学) 化学 材料科学 物理化学 计算机科学 有机化学 并行计算 数学 分子 几何学 电化学 电极
作者
Ninggui Ma,Yu Xiong,Yuhang Wang,Yaqin Zhang,Qianqian Wang,Shuang Luo,Jun Zhao,Changxiong Huang,Jun Fan
出处
期刊:Materials today sustainability [Elsevier]
卷期号:27: 100876-100876 被引量:6
标识
DOI:10.1016/j.mtsust.2024.100876
摘要

Aqueous electrolytes metal-air batteries have garnered widespread attention owing to their safety, low cost, and non-toxic properties. Yet, their development is hindered by slow reaction efficiency. To address this issue, extensive exploratory work has been conducted by researchers. Among them, single-atom catalysts (SACs) represent a significant research direction and a hot topic for the metal-air battery catalysts. Theoretical calculations have been instrumental in predicting and screening high-activity SACs. Besides, the efforts have been made to investigate the performance of SACs for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, we specifically analyze the development and prospects of SACs for ORR/OER. The theoretical research on SACs can be divided into two stages. The first stage involves exploring the mechanism of ORR/OER reactions, also known as ideal condition theoretical simulations. The exploration scope can be categorized into four types: 1) transition metals loaded on different substrates; 2) different transition metals loaded on the same substrate; 3) the impact of the coordination environment on the catalytic efficacy of SACs; and 4) the application of machine learning in the field of catalysts. The second stage involves simulating experimental environments, where researchers begin to consider the effects of voltage, solvation, pH, surface states, and microscopic molecular dynamics on catalysts. This work comprehensively reviews the current status of SACs for ORR/OER and provides suggestions for the development of SACs in the next stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
深情安青应助清飞采纳,获得10
刚刚
1秒前
画檐蛛网发布了新的文献求助10
1秒前
defu完成签到,获得积分10
1秒前
蒸馏水发布了新的文献求助10
2秒前
zjh11143发布了新的文献求助20
3秒前
SciGPT应助Ethereal采纳,获得10
3秒前
俭朴从寒发布了新的文献求助10
4秒前
4秒前
4秒前
橘子完成签到,获得积分10
4秒前
tao发布了新的文献求助10
5秒前
6秒前
Heyouatpome发布了新的文献求助20
6秒前
6秒前
6秒前
6秒前
zyy发布了新的文献求助10
6秒前
烟花应助1111采纳,获得10
6秒前
华年完成签到,获得积分10
7秒前
7秒前
Wait发布了新的文献求助10
9秒前
李健的小迷弟应助LG采纳,获得30
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
CodeCraft应助阿乾采纳,获得10
12秒前
大模型应助找文献呢采纳,获得10
13秒前
像个小蛤蟆完成签到 ,获得积分10
14秒前
15秒前
太阳狮子完成签到,获得积分10
15秒前
15秒前
在逃野猪完成签到,获得积分10
16秒前
李汀发布了新的文献求助10
17秒前
ZXJ发布了新的文献求助10
17秒前
上官若男应助ljy采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624