支持向量机
数量结构-活动关系
随机森林
偏最小二乘回归
人工智能
机器学习
线性回归
均方误差
回归分析
回归
预测建模
分子描述符
计算机科学
数学
统计
作者
Víctor Anderson Acuña Guzmán,María E. Montoya-Alfaro,Luisa P. Negrón-Ballarte,Christian Solís‐Calero
摘要
Peru is one of the most biodiverse countries in the world, which is reflected in its wealth of knowledge about medicinal plants. However, there is a lack of information regarding intestinal absorption and the permeability of natural products. The human colon adenocarcinoma cell line (Caco-2) is an in vitro assay used to measure apparent permeability. This study aims to develop a quantitative structure-property relationship (QSPR) model using machine learning algorithms to predict the apparent permeability of the Caco-2 cell in natural products from Peru.
科研通智能强力驱动
Strongly Powered by AbleSci AI