Machine learning of ECG waveforms and cardiac magnetic resonance for response and survival after cardiac resynchronization therapy

心脏再同步化治疗 心脏磁共振 心脏病学 内科学 医学 心力衰竭 磁共振成像 放射科 射血分数
作者
Derek Bivona,Sona Ghadimi,Yu Wang,Pim J. A. Oomen,Rohit Malhotra,Alistair C. Darby,J. Michael Mangrum,Pamela Mason,Sula Mazimba,Amit R. Patel,Frederick H. Epstein,Kenneth C. Bilchick
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108627-108627
标识
DOI:10.1016/j.compbiomed.2024.108627
摘要

Cardiac resynchronization therapy (CRT) can lead to marked symptom reduction and improved survival in selected patients with heart failure with reduced ejection fraction (HFrEF); however, many candidates for CRT based on clinical guidelines do not have a favorable response. A better way to identify patients expected to benefit from CRT that applies machine learning to accessible and cost-effective diagnostic tools such as the 12-lead electrocardiogram (ECG) could have a major impact on clinical care in HFrEF by helping providers personalize treatment strategies and avoid delays in initiation of other potentially beneficial treatments. This study addresses this need by demonstrating that a novel approach to ECG waveform analysis using functional principal component decomposition (FPCD) performs better than measures that require manual ECG analysis with the human eye and also at least as well as a previously validated but more expensive approach based on cardiac magnetic resonance (CMR). Analyses are based on five-fold cross validation of areas under the curve (AUCs) for CRT response and survival time after the CRT implant using Cox proportional hazards regression with stratification of groups using a Gaussian mixture model approach. Furthermore, FPCD and CMR predictors are shown to be independent, which demonstrates that the FPCD electrical findings and the CMR mechanical findings together provide a synergistic model for response and survival after CRT. In summary, this study provides a highly effective approach to prognostication after CRT in HFrEF using an accessible and inexpensive diagnostic test with a major expected impact on personalization of therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
WellFang发布了新的文献求助20
4秒前
tjfwg发布了新的文献求助10
4秒前
席河木鱼发布了新的文献求助10
4秒前
雄i发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
you完成签到 ,获得积分10
7秒前
打打应助天天向上采纳,获得10
8秒前
9秒前
zz发布了新的文献求助10
9秒前
明亮南珍完成签到,获得积分10
9秒前
Lucas应助123321采纳,获得10
11秒前
11秒前
kimbok发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
15秒前
15秒前
yh发布了新的文献求助30
16秒前
16秒前
YDM发布了新的文献求助10
17秒前
王科研完成签到 ,获得积分10
18秒前
18秒前
orixero应助星空采纳,获得10
20秒前
SciGPT应助天天向上采纳,获得10
22秒前
22秒前
Dawn发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助100
23秒前
23秒前
replay完成签到,获得积分10
25秒前
Terahertz完成签到 ,获得积分10
26秒前
26秒前
26秒前
27秒前
27秒前
DDking完成签到,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664299
求助须知:如何正确求助?哪些是违规求助? 3224405
关于积分的说明 9757262
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012