Forecasting landslide deformation by integrating domain knowledge into interpretable deep learning considering spatiotemporal correlations

山崩 人工智能 领域(数学分析) 变形(气象学) 深度学习 计算机科学 地质学 领域知识 机器学习 地震学 数学 海洋学 数学分析
作者
Zhengjing Ma,Gang Mei
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier]
被引量:2
标识
DOI:10.1016/j.jrmge.2024.02.034
摘要

Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities. Despite the potential to improve landslide predictability, deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque. Herein, we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning. By spatially capturing the interconnections between multiple deformations from different observation points, our method contributes to the understanding and forecasting of landslide systematic behavior. By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables, the local heterogeneity is considered in our method, identifying deformation temporal patterns in different landslide zones. Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach (1) enhances the accuracy of landslide deformation forecasting, (2) identifies significant contributing factors and their influence on spatiotemporal deformation characteristics, and (3) demonstrates how identifying these factors and patterns facilitates landslide forecasting. Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只桃完成签到,获得积分10
1秒前
史鸿完成签到,获得积分10
1秒前
huadao发布了新的文献求助10
2秒前
上官若男应助受伤寻梅采纳,获得10
3秒前
上官若男应助怡然的雪柳采纳,获得10
4秒前
翁沛山完成签到 ,获得积分10
4秒前
Owen应助112采纳,获得10
4秒前
5秒前
能干的邹发布了新的文献求助10
11秒前
11秒前
11秒前
陈哈哈完成签到,获得积分10
12秒前
敢超发布了新的文献求助10
12秒前
xzy998发布了新的文献求助10
13秒前
CipherSage应助zz采纳,获得10
14秒前
16秒前
112完成签到,获得积分10
17秒前
标致夏真发布了新的文献求助10
17秒前
爱哭的小女孩完成签到,获得积分10
18秒前
惜寒完成签到 ,获得积分10
18秒前
怡然的雪柳完成签到,获得积分10
19秒前
112发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
麦海星完成签到 ,获得积分10
23秒前
23秒前
危机的小丸子完成签到,获得积分20
24秒前
24秒前
25秒前
26秒前
26秒前
zyy发布了新的文献求助30
26秒前
书起洛阳完成签到,获得积分20
26秒前
缥缈的采蓝完成签到,获得积分10
26秒前
葳蕤苍生发布了新的文献求助10
27秒前
友好的荣轩完成签到,获得积分10
27秒前
幽默的小懒猪完成签到 ,获得积分20
28秒前
29秒前
wuyuyu5413发布了新的文献求助10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046