Forecasting landslide deformation by integrating domain knowledge into interpretable deep learning considering spatiotemporal correlations

山崩 人工智能 领域(数学分析) 变形(气象学) 深度学习 计算机科学 地质学 领域知识 机器学习 地震学 数学 海洋学 数学分析
作者
Zhengjing Ma,Gang Mei
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier]
被引量:3
标识
DOI:10.1016/j.jrmge.2024.02.034
摘要

Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities. Despite the potential to improve landslide predictability, deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque. Herein, we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning. By spatially capturing the interconnections between multiple deformations from different observation points, our method contributes to the understanding and forecasting of landslide systematic behavior. By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables, the local heterogeneity is considered in our method, identifying deformation temporal patterns in different landslide zones. Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach (1) enhances the accuracy of landslide deformation forecasting, (2) identifies significant contributing factors and their influence on spatiotemporal deformation characteristics, and (3) demonstrates how identifying these factors and patterns facilitates landslide forecasting. Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
浮生绘完成签到,获得积分10
1秒前
开朗立世发布了新的文献求助10
1秒前
3秒前
小马甲应助王春梅采纳,获得10
4秒前
重要友容发布了新的文献求助10
5秒前
ding应助浮生绘采纳,获得10
5秒前
eric完成签到,获得积分10
5秒前
CWY发布了新的文献求助10
5秒前
chen发布了新的文献求助10
5秒前
peace发布了新的文献求助10
6秒前
万能图书馆应助安嫔采纳,获得10
6秒前
Janiuh发布了新的文献求助10
7秒前
Dai发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
Jmz关闭了Jmz文献求助
9秒前
9秒前
焱焱不忘完成签到,获得积分0
11秒前
852应助李琪琪采纳,获得10
11秒前
李庭福完成签到,获得积分10
11秒前
XUUGO发布了新的文献求助10
12秒前
12秒前
12秒前
222发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
peace完成签到,获得积分10
14秒前
14秒前
胡志飞发布了新的文献求助10
14秒前
AAAA完成签到,获得积分20
15秒前
asdfghjkl发布了新的文献求助10
15秒前
qiqiqi完成签到,获得积分10
16秒前
17秒前
17秒前
清秀幻珊发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675445
求助须知:如何正确求助?哪些是违规求助? 4946851
关于积分的说明 15153495
捐赠科研通 4834824
什么是DOI,文献DOI怎么找? 2589661
邀请新用户注册赠送积分活动 1543377
关于科研通互助平台的介绍 1501192