Forecasting landslide deformation by integrating domain knowledge into interpretable deep learning considering spatiotemporal correlations

山崩 人工智能 领域(数学分析) 变形(气象学) 深度学习 计算机科学 地质学 领域知识 机器学习 地震学 数学 海洋学 数学分析
作者
Zhengjing Ma,Gang Mei
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier]
被引量:2
标识
DOI:10.1016/j.jrmge.2024.02.034
摘要

Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities. Despite the potential to improve landslide predictability, deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque. Herein, we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning. By spatially capturing the interconnections between multiple deformations from different observation points, our method contributes to the understanding and forecasting of landslide systematic behavior. By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables, the local heterogeneity is considered in our method, identifying deformation temporal patterns in different landslide zones. Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach (1) enhances the accuracy of landslide deformation forecasting, (2) identifies significant contributing factors and their influence on spatiotemporal deformation characteristics, and (3) demonstrates how identifying these factors and patterns facilitates landslide forecasting. Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
2秒前
3秒前
4秒前
hh应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
Eva完成签到,获得积分10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
清爽老九应助科研通管家采纳,获得20
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
greenPASS666发布了新的文献求助10
5秒前
涂欣桐应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
secbox完成签到,获得积分10
6秒前
刘哈哈发布了新的文献求助30
6秒前
xyzdmmm完成签到,获得积分10
7秒前
7秒前
欢呼冰岚发布了新的文献求助30
8秒前
xiongdi521发布了新的文献求助10
8秒前
honeybee完成签到,获得积分10
10秒前
兔子完成签到,获得积分10
11秒前
汉关发布了新的文献求助10
11秒前
NexusExplorer应助WZ0904采纳,获得10
12秒前
xiongdi521完成签到,获得积分10
13秒前
13秒前
ding应助奋斗的小林采纳,获得10
13秒前
超帅曼柔完成签到,获得积分10
13秒前
酷波er应助xg采纳,获得10
14秒前
听话的亦瑶完成签到,获得积分10
15秒前
龙江游侠完成签到,获得积分10
15秒前
小蘑菇应助honeybee采纳,获得10
16秒前
Agernon应助超帅曼柔采纳,获得10
16秒前
17秒前
jella完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849