Forecasting landslide deformation by integrating domain knowledge into interpretable deep learning considering spatiotemporal correlations

山崩 人工智能 领域(数学分析) 变形(气象学) 深度学习 计算机科学 地质学 领域知识 机器学习 地震学 数学 海洋学 数学分析
作者
Zhengjing Ma,Gang Mei
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier BV]
被引量:3
标识
DOI:10.1016/j.jrmge.2024.02.034
摘要

Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities. Despite the potential to improve landslide predictability, deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque. Herein, we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning. By spatially capturing the interconnections between multiple deformations from different observation points, our method contributes to the understanding and forecasting of landslide systematic behavior. By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables, the local heterogeneity is considered in our method, identifying deformation temporal patterns in different landslide zones. Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach (1) enhances the accuracy of landslide deformation forecasting, (2) identifies significant contributing factors and their influence on spatiotemporal deformation characteristics, and (3) demonstrates how identifying these factors and patterns facilitates landslide forecasting. Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曾经念真应助稳重的手机采纳,获得30
刚刚
20231125发布了新的文献求助10
刚刚
1秒前
1秒前
如初发布了新的文献求助10
1秒前
鱼2333发布了新的文献求助30
2秒前
Hello应助wwk采纳,获得10
2秒前
无敌小帅关注了科研通微信公众号
2秒前
3秒前
guohuameike完成签到,获得积分10
4秒前
科研小白鼠完成签到,获得积分20
4秒前
沉静的蜗牛完成签到,获得积分10
4秒前
小聖完成签到 ,获得积分10
5秒前
嘻嘻嘻发布了新的文献求助10
5秒前
luxx完成签到,获得积分10
6秒前
山大王yoyo发布了新的文献求助10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
brd应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得30
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
坚定萤完成签到,获得积分10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
wuyuzegang应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620