人工智能
图像分割
分割
模式识别(心理学)
计算机科学
计算机视觉
作者
Deepak Kumar,Vinay Kukreja
标识
DOI:10.1016/j.compag.2024.109005
摘要
Due to wheat diseases (WD), the global rate of wheat production is decreasing by 3.6% annually. With the help of computer vision technology, WD recognition is not a challenging task but motivates the concepts of image processing, image segmentation, feature extraction, and AI-based recognition models. The objective of this study is to review and systematically analyze studies that have been published between 2005 and 2022. The authors make an effort to determine the important developments in image segmentation models, tools, datasets, and comparative analysis for the accuracy of the recognition model. The current study follows the standard systematic literature review (SLR) approach and selects 638 studies from five different web source databases. Among 638 studies, 544 studies were discarded in the study extraction process. A total number of 94 studies have been published in 45 reputed journals, and 49 conferences that have been identified with evaluation, validation, proposed, and philosophical criteria. After analysis, ten types of image segmentation models were identified. The most prominent clustering-based image segmentation technique (34.78%) is used for powdery mildew and stripe rust WD recognition. During WD recognition, the accuracy performance parameter is found to be most prominent. China and India are the two countries on the Asian continent that contribute to WD recognition. The current study summarizes the findings of WD research and highlights the need for standard datasets and accuracy. It highlights the importance of exploring and developing more precise and hybrid segmentation classification models for WD recognition.
科研通智能强力驱动
Strongly Powered by AbleSci AI