Image segmentation, classification, and recognition methods for wheat diseases: Two Decades’ systematic literature review

人工智能 图像分割 分割 模式识别(心理学) 计算机科学 计算机视觉
作者
Deepak Kumar,Vinay Kukreja
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 109005-109005 被引量:7
标识
DOI:10.1016/j.compag.2024.109005
摘要

Due to wheat diseases (WD), the global rate of wheat production is decreasing by 3.6% annually. With the help of computer vision technology, WD recognition is not a challenging task but motivates the concepts of image processing, image segmentation, feature extraction, and AI-based recognition models. The objective of this study is to review and systematically analyze studies that have been published between 2005 and 2022. The authors make an effort to determine the important developments in image segmentation models, tools, datasets, and comparative analysis for the accuracy of the recognition model. The current study follows the standard systematic literature review (SLR) approach and selects 638 studies from five different web source databases. Among 638 studies, 544 studies were discarded in the study extraction process. A total number of 94 studies have been published in 45 reputed journals, and 49 conferences that have been identified with evaluation, validation, proposed, and philosophical criteria. After analysis, ten types of image segmentation models were identified. The most prominent clustering-based image segmentation technique (34.78%) is used for powdery mildew and stripe rust WD recognition. During WD recognition, the accuracy performance parameter is found to be most prominent. China and India are the two countries on the Asian continent that contribute to WD recognition. The current study summarizes the findings of WD research and highlights the need for standard datasets and accuracy. It highlights the importance of exploring and developing more precise and hybrid segmentation classification models for WD recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼学生完成签到,获得积分10
刚刚
安平发布了新的文献求助10
刚刚
思源应助君无邪采纳,获得10
刚刚
这瓜不卖发布了新的文献求助10
刚刚
1秒前
堇瓜完成签到 ,获得积分10
1秒前
1秒前
Vegetable_Dog发布了新的文献求助10
2秒前
2秒前
英姑应助爱撒娇的朋友采纳,获得10
3秒前
俊秀的笑槐发布了新的文献求助100
3秒前
3秒前
3秒前
Suraim完成签到,获得积分10
4秒前
4秒前
Suc完成签到,获得积分10
4秒前
4秒前
ce完成签到,获得积分10
4秒前
化学民工发布了新的文献求助10
5秒前
李健应助Genius采纳,获得10
5秒前
5秒前
小葛发布了新的文献求助10
5秒前
Liuxiaoliu完成签到 ,获得积分10
6秒前
铁观音完成签到,获得积分10
6秒前
6秒前
活泼学生发布了新的文献求助10
6秒前
无极微光应助Kinspact采纳,获得20
7秒前
7秒前
脑洞疼应助vane采纳,获得30
7秒前
木易北北完成签到,获得积分20
8秒前
书双发布了新的文献求助10
8秒前
9秒前
北窗发布了新的文献求助10
9秒前
侯孤容完成签到,获得积分10
9秒前
10秒前
10秒前
英姑应助dong采纳,获得10
10秒前
闪闪的柚子关注了科研通微信公众号
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906