S‐Scheme g‐C3N4/CdS Heterostructures Grafting Single Pd Atoms for Ultrafast Charge Transport and Efficient Visible‐Light‐Driven H2 Evolution

材料科学 异质结 可见光谱 电荷(物理) 超短脉冲 光电子学 光学 物理 激光器 量子力学
作者
Rongjie Li,Huaxing Li,Xidong Zhang,Bowen Liu,Binglan Wu,Bicheng Zhu,Jiaguo Yu,Gang Liu,Lirong Zheng,Qingdao Zeng
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (38) 被引量:55
标识
DOI:10.1002/adfm.202402797
摘要

Abstract Emerging step‐scheme (S‐scheme) heterostructures hold unique superiority in steering directional charge transport and reinforcing redox capacity, yet rational modification of S‐scheme heterostructures by single atoms (SAs) for efficient photocatalytic H 2 evolution is rarely reported. In this work, Pd SAs‐modulated organic–inorganic g‐C 3 N 4 /CdS S‐scheme heterostructures are designed and prepared by a one‐pot mechanochemical approach allowing for g‐C 3 N 4 nanosheets/CdS nanoparticles to confine atomically dispersed Pd co‐catalysts. The g‐C 3 N 4 /CdS S‐scheme charge‐transfer pathway is corroborated by a combination of in situ irradiated X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and Kelvin probe force microscopy. Density functional theory (DFT) calculations, high‐angle annular dark‐field scanning transmission electron microscopy, and X‐ray absorption fine structure identify Pd‐S 3 and Pd‐N 2 atomic moieties underpinned by the electronic interaction between Pd SAs and g‐C 3 N 4 /CdS heterostructures, in which the d ‐band center of Pd SAs is optimized for proton adsorption thermodynamically. Further, the g‐C 3 N 4 /CdS S‐scheme heterostructures alongside Pd SAs in concert boost the rapid migration of photogenerated electrons (1.05 ps) via Pd─S and Pd─N bond‐derived channels. A maximal H 2 evolution rate of 85.66 mmol h −1 g −1 is achieved by 1 wt% Pd‐20 wt% g‐C 3 N 4 /CdS hierarchical composites. This work may guide the design of high‐efficiency S‐scheme‐based photocatalysts for solar‐to‐H 2 conversion and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助mukji采纳,获得30
刚刚
zyr发布了新的文献求助20
刚刚
高成就关注了科研通微信公众号
刚刚
NexusExplorer应助蔺铁身采纳,获得10
刚刚
sunpeipei发布了新的文献求助150
1秒前
大鹅发布了新的文献求助10
2秒前
吴波丹发布了新的文献求助10
2秒前
romio发布了新的文献求助10
2秒前
3秒前
5秒前
5秒前
孔雨珍发布了新的文献求助10
7秒前
8秒前
科研dog完成签到,获得积分10
8秒前
8秒前
8秒前
帅b发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
bkagyin应助舒服的皮皮虾采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
蓝天应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得30
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
蓝天应助科研通管家采纳,获得10
12秒前
michen发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675662
求助须知:如何正确求助?哪些是违规求助? 4948205
关于积分的说明 15154348
捐赠科研通 4834937
什么是DOI,文献DOI怎么找? 2589774
邀请新用户注册赠送积分活动 1543545
关于科研通互助平台的介绍 1501282