材料科学
异质结
可见光谱
电荷(物理)
超短脉冲
光电子学
光学
物理
激光器
量子力学
作者
Rongjie Li,Huaxing Li,Xidong Zhang,Bowen Liu,Binglan Wu,Bicheng Zhu,Jiaguo Yu,Gang Liu,Lirong Zheng,Qingdao Zeng
标识
DOI:10.1002/adfm.202402797
摘要
Abstract Emerging step‐scheme (S‐scheme) heterostructures hold unique superiority in steering directional charge transport and reinforcing redox capacity, yet rational modification of S‐scheme heterostructures by single atoms (SAs) for efficient photocatalytic H 2 evolution is rarely reported. In this work, Pd SAs‐modulated organic–inorganic g‐C 3 N 4 /CdS S‐scheme heterostructures are designed and prepared by a one‐pot mechanochemical approach allowing for g‐C 3 N 4 nanosheets/CdS nanoparticles to confine atomically dispersed Pd co‐catalysts. The g‐C 3 N 4 /CdS S‐scheme charge‐transfer pathway is corroborated by a combination of in situ irradiated X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and Kelvin probe force microscopy. Density functional theory (DFT) calculations, high‐angle annular dark‐field scanning transmission electron microscopy, and X‐ray absorption fine structure identify Pd‐S 3 and Pd‐N 2 atomic moieties underpinned by the electronic interaction between Pd SAs and g‐C 3 N 4 /CdS heterostructures, in which the d ‐band center of Pd SAs is optimized for proton adsorption thermodynamically. Further, the g‐C 3 N 4 /CdS S‐scheme heterostructures alongside Pd SAs in concert boost the rapid migration of photogenerated electrons (1.05 ps) via Pd─S and Pd─N bond‐derived channels. A maximal H 2 evolution rate of 85.66 mmol h −1 g −1 is achieved by 1 wt% Pd‐20 wt% g‐C 3 N 4 /CdS hierarchical composites. This work may guide the design of high‐efficiency S‐scheme‐based photocatalysts for solar‐to‐H 2 conversion and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI