S‐Scheme g‐C3N4/CdS Heterostructures Grafting Single Pd Atoms for Ultrafast Charge Transport and Efficient Visible‐Light‐Driven H2 Evolution

材料科学 异质结 可见光谱 电荷(物理) 超短脉冲 光电子学 光学 物理 量子力学 激光器
作者
Rongjie Li,Huaxing Li,Xidong Zhang,Bowen Liu,Binglan Wu,Bicheng Zhu,Jiaguo Yu,Gang Liu,Lirong Zheng,Qingdao Zeng
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (38) 被引量:55
标识
DOI:10.1002/adfm.202402797
摘要

Abstract Emerging step‐scheme (S‐scheme) heterostructures hold unique superiority in steering directional charge transport and reinforcing redox capacity, yet rational modification of S‐scheme heterostructures by single atoms (SAs) for efficient photocatalytic H 2 evolution is rarely reported. In this work, Pd SAs‐modulated organic–inorganic g‐C 3 N 4 /CdS S‐scheme heterostructures are designed and prepared by a one‐pot mechanochemical approach allowing for g‐C 3 N 4 nanosheets/CdS nanoparticles to confine atomically dispersed Pd co‐catalysts. The g‐C 3 N 4 /CdS S‐scheme charge‐transfer pathway is corroborated by a combination of in situ irradiated X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and Kelvin probe force microscopy. Density functional theory (DFT) calculations, high‐angle annular dark‐field scanning transmission electron microscopy, and X‐ray absorption fine structure identify Pd‐S 3 and Pd‐N 2 atomic moieties underpinned by the electronic interaction between Pd SAs and g‐C 3 N 4 /CdS heterostructures, in which the d ‐band center of Pd SAs is optimized for proton adsorption thermodynamically. Further, the g‐C 3 N 4 /CdS S‐scheme heterostructures alongside Pd SAs in concert boost the rapid migration of photogenerated electrons (1.05 ps) via Pd─S and Pd─N bond‐derived channels. A maximal H 2 evolution rate of 85.66 mmol h −1 g −1 is achieved by 1 wt% Pd‐20 wt% g‐C 3 N 4 /CdS hierarchical composites. This work may guide the design of high‐efficiency S‐scheme‐based photocatalysts for solar‐to‐H 2 conversion and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助降娄采纳,获得10
1秒前
爆米花应助muri采纳,获得10
1秒前
1秒前
2秒前
SY完成签到,获得积分10
2秒前
lyp发布了新的文献求助10
2秒前
若溪完成签到,获得积分10
2秒前
2秒前
2秒前
随遇而安发布了新的文献求助10
3秒前
3秒前
冷酷夏真完成签到 ,获得积分10
3秒前
zaaaz发布了新的文献求助10
3秒前
Magic麦发布了新的文献求助10
3秒前
aga发布了新的文献求助10
3秒前
3秒前
3秒前
zz应助够苟采纳,获得10
4秒前
4秒前
科研通AI6应助totpto采纳,获得30
4秒前
celinewu完成签到,获得积分10
4秒前
雪花完成签到,获得积分10
4秒前
大胆如彤发布了新的文献求助10
5秒前
HM发布了新的文献求助10
5秒前
cmh发布了新的文献求助10
5秒前
Ava应助小玉采纳,获得10
5秒前
xxwxx发布了新的文献求助10
5秒前
huangqian发布了新的文献求助10
6秒前
优美伟泽发布了新的文献求助10
6秒前
爱想想完成签到,获得积分10
6秒前
6秒前
若溪发布了新的文献求助10
6秒前
6秒前
wmqlu发布了新的文献求助10
6秒前
6秒前
yes完成签到,获得积分10
7秒前
7秒前
天天快乐应助版权版权采纳,获得10
7秒前
Frozen Flame发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647671
求助须知:如何正确求助?哪些是违规求助? 4774049
关于积分的说明 15040794
捐赠科研通 4806561
什么是DOI,文献DOI怎么找? 2570314
邀请新用户注册赠送积分活动 1527131
关于科研通互助平台的介绍 1486211