IMG-28. AUTOMATIC BRAIN TUMOR VOLUMETRIC ANALYSIS IN MAGNETIC RESONANCE IMAGING GENERALIZABLE TO PEDIATRIC NEURO-ONCOLOGY

磁共振成像 医学 小儿肿瘤学 脑瘤 医学物理学 核医学 放射科 内科学 病理 癌症
作者
Zhifan Jiang,Daniel Capellán-Martín,Abhijeet Parida,Xinyang Liu,Van K. Lam,Hareem Nisar,Austin Tapp,María J. Ledesma‐Carbayo,Syed Muhammad Anwar,Marius George Linguraru
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.365
摘要

Abstract BACKGROUND The prognosis of brain tumors is variable in clinical practice if it only relies on human interpretation of magnetic resonance imaging (MRI). The automatic segmentation of brain tumors in MRI enables quantitative analysis in support of clinical trials and personalized patient care. We developed benchmarked deep learning-based tools that are generalizable to the volumetric quantification of various tumor types across diverse populations. METHODS We participated in the well-established international brain tumor segmentation challenge (BraTS 2023) and benchmarking competition. The challenge made available 4,500 multi-national brain tumor cases with multi-sequence MRIs, including pediatric high-grade gliomas (PED), i.e., high-grade astrocytoma and diffuse midline glioma, and adult gliomas, brain metastases (MET) and intracranial meningiomas (MEN). Each case comprises four MRI volumes: T1, contrast-enhanced T1, T2, and T2-FLAIR. Manual segmentations were provided to establish ground truth for enhancing tumor (ET), tumor core (TC), and whole tumor (WT). Our framework used a model ensemble strategy based on two state-of-the-art deep learning models: a convolutional neural network (nnU-Net) and a vision transformer (Swin UNETR) and was tested for broader applicability across multiple tumor types. The framework was trained on 99, 1,000, and 165 cases and validated on 45, 141, and 31 unseen cases for PED, MEN, and MET, respectively. Automatic segmentations were evaluated by lesion-wise volume overlap (Dice similarity score, DSC) and Hausdorff distance (HD). RESULTS In the evaluation on independent unseen test datasets, our automatic tool was ranked first for PED, third for MEN, and fourth for MET volumetric analysis. Our method resulted in PED lesion-wise DSC of 0.733, 0.782, 0.817 and HD (mm) of 75.93, 25.54, 24.18 for ET, TC, and WT, respectively. CONCLUSIONS These brain tumor volumetric analysis tools are readily available to be efficiently tested on diverse datasets. Automatic MRI analysis provides consistent quantitative data for multi-institutional protocols and clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助syjjj采纳,获得10
刚刚
刚刚
1秒前
寻道图强应助chens627采纳,获得30
1秒前
上官若男应助纪鹏飞采纳,获得10
1秒前
爱静静应助谨慎的寒梦采纳,获得10
2秒前
科研r发布了新的文献求助10
2秒前
科研通AI2S应助来年可期采纳,获得10
3秒前
白果发布了新的文献求助10
3秒前
小吴同志发布了新的文献求助10
5秒前
zyy_cwdl发布了新的文献求助10
5秒前
5秒前
Orange应助Refuel采纳,获得10
5秒前
5秒前
henry发布了新的文献求助10
6秒前
机智的板栗完成签到,获得积分10
7秒前
zszzzsss完成签到,获得积分10
7秒前
现代火车发布了新的文献求助10
7秒前
7秒前
Noldor应助艾云欣采纳,获得10
8秒前
8秒前
渣渣XM发布了新的文献求助10
8秒前
王小花完成签到,获得积分10
9秒前
baby的跑男完成签到,获得积分10
9秒前
11秒前
科研通AI2S应助溧子呀采纳,获得10
11秒前
11秒前
12秒前
王京华发布了新的文献求助10
12秒前
细腻代真发布了新的文献求助10
13秒前
共享精神应助跳跃的香岚采纳,获得10
13秒前
小波完成签到,获得积分10
13秒前
九点半上课了完成签到,获得积分10
13秒前
荷兰香猪完成签到,获得积分10
14秒前
14秒前
物是人非完成签到,获得积分10
14秒前
小豆爱读书完成签到,获得积分10
14秒前
泠希完成签到,获得积分10
14秒前
Hello应助陈chen采纳,获得30
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799545
关于积分的说明 7835454
捐赠科研通 2456868
什么是DOI,文献DOI怎么找? 1307446
科研通“疑难数据库(出版商)”最低求助积分说明 628207
版权声明 601655