IMG-28. AUTOMATIC BRAIN TUMOR VOLUMETRIC ANALYSIS IN MAGNETIC RESONANCE IMAGING GENERALIZABLE TO PEDIATRIC NEURO-ONCOLOGY

磁共振成像 医学 小儿肿瘤学 脑瘤 医学物理学 核医学 放射科 内科学 病理 癌症
作者
Zhifan Jiang,Daniel Capellán-Martín,Abhijeet Parida,Xinyang Liu,Van K. Lam,Hareem Nisar,Austin Tapp,María J. Ledesma‐Carbayo,Syed Muhammad Anwar,Marius George Linguraru
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.365
摘要

Abstract BACKGROUND The prognosis of brain tumors is variable in clinical practice if it only relies on human interpretation of magnetic resonance imaging (MRI). The automatic segmentation of brain tumors in MRI enables quantitative analysis in support of clinical trials and personalized patient care. We developed benchmarked deep learning-based tools that are generalizable to the volumetric quantification of various tumor types across diverse populations. METHODS We participated in the well-established international brain tumor segmentation challenge (BraTS 2023) and benchmarking competition. The challenge made available 4,500 multi-national brain tumor cases with multi-sequence MRIs, including pediatric high-grade gliomas (PED), i.e., high-grade astrocytoma and diffuse midline glioma, and adult gliomas, brain metastases (MET) and intracranial meningiomas (MEN). Each case comprises four MRI volumes: T1, contrast-enhanced T1, T2, and T2-FLAIR. Manual segmentations were provided to establish ground truth for enhancing tumor (ET), tumor core (TC), and whole tumor (WT). Our framework used a model ensemble strategy based on two state-of-the-art deep learning models: a convolutional neural network (nnU-Net) and a vision transformer (Swin UNETR) and was tested for broader applicability across multiple tumor types. The framework was trained on 99, 1,000, and 165 cases and validated on 45, 141, and 31 unseen cases for PED, MEN, and MET, respectively. Automatic segmentations were evaluated by lesion-wise volume overlap (Dice similarity score, DSC) and Hausdorff distance (HD). RESULTS In the evaluation on independent unseen test datasets, our automatic tool was ranked first for PED, third for MEN, and fourth for MET volumetric analysis. Our method resulted in PED lesion-wise DSC of 0.733, 0.782, 0.817 and HD (mm) of 75.93, 25.54, 24.18 for ET, TC, and WT, respectively. CONCLUSIONS These brain tumor volumetric analysis tools are readily available to be efficiently tested on diverse datasets. Automatic MRI analysis provides consistent quantitative data for multi-institutional protocols and clinical trials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曼曼完成签到,获得积分20
刚刚
活泼的寄风完成签到,获得积分10
刚刚
眼中星光完成签到,获得积分10
刚刚
yanaaaaaa应助真实的青旋采纳,获得10
1秒前
隐形曼青应助真实的青旋采纳,获得10
1秒前
你是谁完成签到,获得积分10
1秒前
灵巧汉堡完成签到 ,获得积分10
1秒前
领导范儿应助安珊采纳,获得10
1秒前
1秒前
怕黑冷卉发布了新的文献求助10
2秒前
科目三应助小能猫采纳,获得10
2秒前
Lucins完成签到,获得积分20
2秒前
chenyeting发布了新的文献求助10
2秒前
豆子发布了新的文献求助10
3秒前
3秒前
Aileen发布了新的文献求助10
3秒前
YQW完成签到,获得积分10
3秒前
仁爱的眼睛完成签到,获得积分10
3秒前
3秒前
清风朗月发布了新的文献求助10
4秒前
清水完成签到 ,获得积分10
4秒前
香蕉觅云应助小李采纳,获得10
5秒前
bkagyin应助lkk采纳,获得10
5秒前
葡萄糖完成签到,获得积分10
5秒前
直率的饼干完成签到,获得积分20
5秒前
1234发布了新的文献求助10
5秒前
在水一方应助zwl采纳,获得10
6秒前
清爽的夏真完成签到,获得积分10
6秒前
深情安青应助刘泉采纳,获得10
6秒前
zldashuaige完成签到,获得积分10
6秒前
7秒前
小曾发布了新的文献求助10
7秒前
cjypdf完成签到,获得积分10
7秒前
隐形晓兰完成签到,获得积分10
7秒前
白宫发布了新的文献求助10
7秒前
济南青年完成签到,获得积分10
8秒前
小毕可乐完成签到,获得积分10
9秒前
9秒前
蔡蔡完成签到,获得积分10
9秒前
宇文数学发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765854
求助须知:如何正确求助?哪些是违规求助? 5563108
关于积分的说明 15410479
捐赠科研通 4900307
什么是DOI,文献DOI怎么找? 2636383
邀请新用户注册赠送积分活动 1584596
关于科研通互助平台的介绍 1539869