IMG-28. AUTOMATIC BRAIN TUMOR VOLUMETRIC ANALYSIS IN MAGNETIC RESONANCE IMAGING GENERALIZABLE TO PEDIATRIC NEURO-ONCOLOGY

磁共振成像 医学 小儿肿瘤学 脑瘤 医学物理学 核医学 放射科 内科学 病理 癌症
作者
Zhifan Jiang,Daniel Capellán-Martín,Abhijeet Parida,Xinyang Liu,Van K. Lam,Hareem Nisar,Austin Tapp,María J. Ledesma‐Carbayo,Syed Muhammad Anwar,Marius George Linguraru
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.365
摘要

Abstract BACKGROUND The prognosis of brain tumors is variable in clinical practice if it only relies on human interpretation of magnetic resonance imaging (MRI). The automatic segmentation of brain tumors in MRI enables quantitative analysis in support of clinical trials and personalized patient care. We developed benchmarked deep learning-based tools that are generalizable to the volumetric quantification of various tumor types across diverse populations. METHODS We participated in the well-established international brain tumor segmentation challenge (BraTS 2023) and benchmarking competition. The challenge made available 4,500 multi-national brain tumor cases with multi-sequence MRIs, including pediatric high-grade gliomas (PED), i.e., high-grade astrocytoma and diffuse midline glioma, and adult gliomas, brain metastases (MET) and intracranial meningiomas (MEN). Each case comprises four MRI volumes: T1, contrast-enhanced T1, T2, and T2-FLAIR. Manual segmentations were provided to establish ground truth for enhancing tumor (ET), tumor core (TC), and whole tumor (WT). Our framework used a model ensemble strategy based on two state-of-the-art deep learning models: a convolutional neural network (nnU-Net) and a vision transformer (Swin UNETR) and was tested for broader applicability across multiple tumor types. The framework was trained on 99, 1,000, and 165 cases and validated on 45, 141, and 31 unseen cases for PED, MEN, and MET, respectively. Automatic segmentations were evaluated by lesion-wise volume overlap (Dice similarity score, DSC) and Hausdorff distance (HD). RESULTS In the evaluation on independent unseen test datasets, our automatic tool was ranked first for PED, third for MEN, and fourth for MET volumetric analysis. Our method resulted in PED lesion-wise DSC of 0.733, 0.782, 0.817 and HD (mm) of 75.93, 25.54, 24.18 for ET, TC, and WT, respectively. CONCLUSIONS These brain tumor volumetric analysis tools are readily available to be efficiently tested on diverse datasets. Automatic MRI analysis provides consistent quantitative data for multi-institutional protocols and clinical trials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小高发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
颜卿完成签到 ,获得积分10
3秒前
xtx完成签到,获得积分20
3秒前
3秒前
砥砺前行完成签到 ,获得积分10
3秒前
3秒前
wrr发布了新的文献求助10
3秒前
美满的诗蕾完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
4秒前
凡仔发布了新的文献求助10
4秒前
Cindy165完成签到 ,获得积分10
5秒前
田様应助cslghe采纳,获得10
5秒前
牛牛发布了新的文献求助10
6秒前
xtx发布了新的文献求助10
6秒前
6秒前
7秒前
曾经山灵发布了新的文献求助10
7秒前
ding应助lxr采纳,获得10
8秒前
8秒前
9秒前
lrsabrina发布了新的文献求助10
10秒前
charllie完成签到 ,获得积分10
11秒前
隐形曼青应助牛牛采纳,获得10
11秒前
lsong完成签到,获得积分10
12秒前
ziyue发布了新的文献求助10
13秒前
13秒前
梦见鲸鱼岛完成签到,获得积分10
13秒前
王凯发布了新的文献求助10
13秒前
lucky发布了新的文献求助10
14秒前
Boston完成签到,获得积分10
15秒前
16秒前
ayaka发布了新的文献求助10
16秒前
星期天不上发条完成签到 ,获得积分10
17秒前
WuCola完成签到 ,获得积分10
17秒前
wangzx完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604240
求助须知:如何正确求助?哪些是违规求助? 4689005
关于积分的说明 14857491
捐赠科研通 4697182
什么是DOI,文献DOI怎么找? 2541216
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471867