已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

IMG-28. AUTOMATIC BRAIN TUMOR VOLUMETRIC ANALYSIS IN MAGNETIC RESONANCE IMAGING GENERALIZABLE TO PEDIATRIC NEURO-ONCOLOGY

磁共振成像 医学 小儿肿瘤学 脑瘤 医学物理学 核医学 放射科 内科学 病理 癌症
作者
Zhifan Jiang,Daniel Capellán-Martín,Abhijeet Parida,Xinyang Liu,Van K. Lam,Hareem Nisar,Austin Tapp,María J. Ledesma‐Carbayo,Syed Muhammad Anwar,Marius George Linguraru
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.365
摘要

Abstract BACKGROUND The prognosis of brain tumors is variable in clinical practice if it only relies on human interpretation of magnetic resonance imaging (MRI). The automatic segmentation of brain tumors in MRI enables quantitative analysis in support of clinical trials and personalized patient care. We developed benchmarked deep learning-based tools that are generalizable to the volumetric quantification of various tumor types across diverse populations. METHODS We participated in the well-established international brain tumor segmentation challenge (BraTS 2023) and benchmarking competition. The challenge made available 4,500 multi-national brain tumor cases with multi-sequence MRIs, including pediatric high-grade gliomas (PED), i.e., high-grade astrocytoma and diffuse midline glioma, and adult gliomas, brain metastases (MET) and intracranial meningiomas (MEN). Each case comprises four MRI volumes: T1, contrast-enhanced T1, T2, and T2-FLAIR. Manual segmentations were provided to establish ground truth for enhancing tumor (ET), tumor core (TC), and whole tumor (WT). Our framework used a model ensemble strategy based on two state-of-the-art deep learning models: a convolutional neural network (nnU-Net) and a vision transformer (Swin UNETR) and was tested for broader applicability across multiple tumor types. The framework was trained on 99, 1,000, and 165 cases and validated on 45, 141, and 31 unseen cases for PED, MEN, and MET, respectively. Automatic segmentations were evaluated by lesion-wise volume overlap (Dice similarity score, DSC) and Hausdorff distance (HD). RESULTS In the evaluation on independent unseen test datasets, our automatic tool was ranked first for PED, third for MEN, and fourth for MET volumetric analysis. Our method resulted in PED lesion-wise DSC of 0.733, 0.782, 0.817 and HD (mm) of 75.93, 25.54, 24.18 for ET, TC, and WT, respectively. CONCLUSIONS These brain tumor volumetric analysis tools are readily available to be efficiently tested on diverse datasets. Automatic MRI analysis provides consistent quantitative data for multi-institutional protocols and clinical trials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可一可再完成签到 ,获得积分10
1秒前
Rae完成签到,获得积分10
3秒前
贾靖涵发布了新的文献求助30
4秒前
山复尔尔完成签到 ,获得积分10
4秒前
热狗小面包完成签到,获得积分10
5秒前
欧哈纳完成签到 ,获得积分10
5秒前
哑巴和喇叭完成签到 ,获得积分10
5秒前
威威完成签到,获得积分10
6秒前
8秒前
赘婿应助xia采纳,获得10
9秒前
猫哈哈发布了新的文献求助10
10秒前
念柏完成签到,获得积分20
11秒前
正直的雪糕完成签到,获得积分20
12秒前
14秒前
小蘑菇应助佛光辉采纳,获得10
14秒前
14秒前
14秒前
刘婉敏完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
周大福完成签到 ,获得积分10
17秒前
lwl完成签到,获得积分10
17秒前
20秒前
twk发布了新的文献求助10
21秒前
打打应助caoyy采纳,获得10
21秒前
23秒前
HUO完成签到 ,获得积分10
23秒前
23秒前
23秒前
24秒前
hx完成签到 ,获得积分10
25秒前
风吹玲响完成签到 ,获得积分10
25秒前
sxmt123456789完成签到,获得积分10
25秒前
ZM完成签到 ,获得积分10
26秒前
26秒前
6666完成签到,获得积分10
27秒前
linkin完成签到 ,获得积分10
27秒前
sxmt123456789发布了新的文献求助30
28秒前
香蕉觅云应助贾靖涵采纳,获得10
30秒前
小齐爱科研完成签到,获得积分10
31秒前
kuang完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771975
求助须知:如何正确求助?哪些是违规求助? 5594820
关于积分的说明 15428720
捐赠科研通 4905144
什么是DOI,文献DOI怎么找? 2639238
邀请新用户注册赠送积分活动 1587134
关于科研通互助平台的介绍 1542004