IMG-28. AUTOMATIC BRAIN TUMOR VOLUMETRIC ANALYSIS IN MAGNETIC RESONANCE IMAGING GENERALIZABLE TO PEDIATRIC NEURO-ONCOLOGY

磁共振成像 医学 小儿肿瘤学 脑瘤 医学物理学 核医学 放射科 内科学 病理 癌症
作者
Zhifan Jiang,Daniel Capellán-Martín,Abhijeet Parida,Xinyang Liu,Van K. Lam,Hareem Nisar,Austin Tapp,María J. Ledesma‐Carbayo,Syed Muhammad Anwar,Marius George Linguraru
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.365
摘要

Abstract BACKGROUND The prognosis of brain tumors is variable in clinical practice if it only relies on human interpretation of magnetic resonance imaging (MRI). The automatic segmentation of brain tumors in MRI enables quantitative analysis in support of clinical trials and personalized patient care. We developed benchmarked deep learning-based tools that are generalizable to the volumetric quantification of various tumor types across diverse populations. METHODS We participated in the well-established international brain tumor segmentation challenge (BraTS 2023) and benchmarking competition. The challenge made available 4,500 multi-national brain tumor cases with multi-sequence MRIs, including pediatric high-grade gliomas (PED), i.e., high-grade astrocytoma and diffuse midline glioma, and adult gliomas, brain metastases (MET) and intracranial meningiomas (MEN). Each case comprises four MRI volumes: T1, contrast-enhanced T1, T2, and T2-FLAIR. Manual segmentations were provided to establish ground truth for enhancing tumor (ET), tumor core (TC), and whole tumor (WT). Our framework used a model ensemble strategy based on two state-of-the-art deep learning models: a convolutional neural network (nnU-Net) and a vision transformer (Swin UNETR) and was tested for broader applicability across multiple tumor types. The framework was trained on 99, 1,000, and 165 cases and validated on 45, 141, and 31 unseen cases for PED, MEN, and MET, respectively. Automatic segmentations were evaluated by lesion-wise volume overlap (Dice similarity score, DSC) and Hausdorff distance (HD). RESULTS In the evaluation on independent unseen test datasets, our automatic tool was ranked first for PED, third for MEN, and fourth for MET volumetric analysis. Our method resulted in PED lesion-wise DSC of 0.733, 0.782, 0.817 and HD (mm) of 75.93, 25.54, 24.18 for ET, TC, and WT, respectively. CONCLUSIONS These brain tumor volumetric analysis tools are readily available to be efficiently tested on diverse datasets. Automatic MRI analysis provides consistent quantitative data for multi-institutional protocols and clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
刚刚
mashibeo应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
李向阳完成签到 ,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得30
刚刚
风清扬应助科研通管家采纳,获得30
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
PUMCHmy发布了新的文献求助10
1秒前
1秒前
郑建星发布了新的文献求助10
1秒前
2秒前
HSS完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
会幸福的发布了新的文献求助30
5秒前
舟舟完成签到 ,获得积分10
5秒前
5秒前
多情罡发布了新的文献求助10
7秒前
Harvey3568发布了新的文献求助10
7秒前
7秒前
Hello应助从容的寒蕾采纳,获得10
10秒前
PUMCHmy完成签到,获得积分20
10秒前
可爱的函函应助一川采纳,获得10
11秒前
大个应助可乐采纳,获得10
11秒前
bkagyin应助郑建星采纳,获得10
11秒前
billkin完成签到,获得积分10
11秒前
万能图书馆应助Rita采纳,获得10
11秒前
11秒前
华仔应助从不使用膨胀券采纳,获得10
12秒前
123完成签到,获得积分10
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454466
求助须知:如何正确求助?哪些是违规求助? 4561823
关于积分的说明 14283673
捐赠科研通 4485699
什么是DOI,文献DOI怎么找? 2456933
邀请新用户注册赠送积分活动 1447601
关于科研通互助平台的介绍 1422841