亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IMG-28. AUTOMATIC BRAIN TUMOR VOLUMETRIC ANALYSIS IN MAGNETIC RESONANCE IMAGING GENERALIZABLE TO PEDIATRIC NEURO-ONCOLOGY

磁共振成像 医学 小儿肿瘤学 脑瘤 医学物理学 核医学 放射科 内科学 病理 癌症
作者
Zhifan Jiang,Daniel Capellán-Martín,Abhijeet Parida,Xinyang Liu,Van K. Lam,Hareem Nisar,Austin Tapp,María J. Ledesma‐Carbayo,Syed Muhammad Anwar,Marius George Linguraru
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.365
摘要

Abstract BACKGROUND The prognosis of brain tumors is variable in clinical practice if it only relies on human interpretation of magnetic resonance imaging (MRI). The automatic segmentation of brain tumors in MRI enables quantitative analysis in support of clinical trials and personalized patient care. We developed benchmarked deep learning-based tools that are generalizable to the volumetric quantification of various tumor types across diverse populations. METHODS We participated in the well-established international brain tumor segmentation challenge (BraTS 2023) and benchmarking competition. The challenge made available 4,500 multi-national brain tumor cases with multi-sequence MRIs, including pediatric high-grade gliomas (PED), i.e., high-grade astrocytoma and diffuse midline glioma, and adult gliomas, brain metastases (MET) and intracranial meningiomas (MEN). Each case comprises four MRI volumes: T1, contrast-enhanced T1, T2, and T2-FLAIR. Manual segmentations were provided to establish ground truth for enhancing tumor (ET), tumor core (TC), and whole tumor (WT). Our framework used a model ensemble strategy based on two state-of-the-art deep learning models: a convolutional neural network (nnU-Net) and a vision transformer (Swin UNETR) and was tested for broader applicability across multiple tumor types. The framework was trained on 99, 1,000, and 165 cases and validated on 45, 141, and 31 unseen cases for PED, MEN, and MET, respectively. Automatic segmentations were evaluated by lesion-wise volume overlap (Dice similarity score, DSC) and Hausdorff distance (HD). RESULTS In the evaluation on independent unseen test datasets, our automatic tool was ranked first for PED, third for MEN, and fourth for MET volumetric analysis. Our method resulted in PED lesion-wise DSC of 0.733, 0.782, 0.817 and HD (mm) of 75.93, 25.54, 24.18 for ET, TC, and WT, respectively. CONCLUSIONS These brain tumor volumetric analysis tools are readily available to be efficiently tested on diverse datasets. Automatic MRI analysis provides consistent quantitative data for multi-institutional protocols and clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
Artin发布了新的文献求助30
17秒前
Ysn发布了新的文献求助10
20秒前
科研通AI2S应助Ysn采纳,获得10
26秒前
39秒前
MchemG应助科研通管家采纳,获得10
52秒前
MchemG应助科研通管家采纳,获得10
52秒前
Jim完成签到,获得积分10
52秒前
57秒前
puutteita发布了新的文献求助10
1分钟前
wynne313完成签到 ,获得积分10
1分钟前
海妍完成签到,获得积分10
1分钟前
海妍发布了新的文献求助10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
1分钟前
Artin完成签到,获得积分10
1分钟前
研友_LwlDdn发布了新的文献求助10
1分钟前
nnc发布了新的文献求助50
1分钟前
Weiwei应助nnc采纳,获得50
2分钟前
nnc完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助wuran采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
嘻嘻完成签到,获得积分10
3分钟前
Orange应助3927456843采纳,获得10
3分钟前
沉沉完成签到 ,获得积分0
3分钟前
4分钟前
小蘑菇应助LeezZZZ采纳,获得10
4分钟前
3927456843发布了新的文献求助10
4分钟前
4分钟前
LeezZZZ发布了新的文献求助10
4分钟前
冬去春来完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
3927456843完成签到,获得积分10
4分钟前
Lucas应助梦想家采纳,获得10
5分钟前
科研通AI6应助LeezZZZ采纳,获得10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877