亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Enhanced Alternating Direction Method of Multipliers-Based Interior Point Method for Linear and Conic Optimization

内点法 圆锥截面 数学优化 数学 线性规划 点(几何) 非线性规划 计算机科学 算法 非线性系统 几何学 物理 量子力学
作者
Qi Bin Deng,Qing Feng,Wenzhi Gao,Debiao Ge,Bo Jiang,Yuntian Jiang,Jingsong Liu,Tianhao Liu,Chu Xue,Yinyu Ye,Chuwen Zhang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0017
摘要

The alternating-direction-method-of-multipliers-based (ADMM-based) interior point method, or ABIP method, is a hybrid algorithm that effectively combines interior point method (IPM) and first-order methods to achieve a performance boost in large-scale linear optimization. Different from traditional IPM that relies on computationally intensive Newton steps, the ABIP method applies ADMM to approximately solve the barrier penalized problem. However, similar to other first-order methods, this technique remains sensitive to condition number and inverse precision. In this paper, we provide an enhanced ABIP method with multiple improvements. First, we develop an ABIP method to solve the general linear conic optimization and establish the associated iteration complexity. Second, inspired by some existing methods, we develop different implementation strategies for the ABIP method, which substantially improve its performance in linear optimization. Finally, we conduct extensive numerical experiments in both synthetic and real-world data sets to demonstrate the empirical advantage of our developments. In particular, the enhanced ABIP method achieves a 5.8× reduction in the geometric mean of run time on 105 selected linear optimization instances from Netlib, and it exhibits advantages in certain structured problems, such as support vector machine and PageRank. However, the enhanced ABIP method still falls behind commercial solvers in many benchmarks, especially when high accuracy is desired. We posit that it can serve as a complementary tool alongside well-established solvers. History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms—Continuous. Funding: This research was supported by the National Natural Science Foundation of China [Grants 72394360, 72394364, 72394365, 72225009, 72171141, and 72150001] and by the Program for Innovative Research Team of Shanghai University of Finance and Economics. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0017 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0017 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
Owen应助xinchi采纳,获得10
12秒前
小草发布了新的文献求助10
16秒前
xinchi完成签到,获得积分10
20秒前
Jasper应助小泽采纳,获得10
20秒前
hhhhhh应助annathd采纳,获得10
27秒前
清飏举报ni求助涉嫌违规
50秒前
桐桐应助KSung采纳,获得10
58秒前
58秒前
58秒前
FashionBoy应助科研通管家采纳,获得10
58秒前
wy.he应助陶醉的烤鸡采纳,获得10
1分钟前
dlfg完成签到,获得积分10
1分钟前
1分钟前
kd1412完成签到 ,获得积分10
1分钟前
KSung发布了新的文献求助10
1分钟前
华仔应助XX采纳,获得10
1分钟前
清飏举报vivianzzz求助涉嫌违规
1分钟前
1分钟前
XX完成签到,获得积分20
1分钟前
2021完成签到 ,获得积分10
1分钟前
XX发布了新的文献求助10
1分钟前
情怀应助ceeray23采纳,获得20
1分钟前
Elthrai完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
2分钟前
小马完成签到,获得积分10
2分钟前
小马发布了新的文献求助10
2分钟前
科目三应助XX采纳,获得10
2分钟前
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
2分钟前
盛夏如花发布了新的文献求助80
2分钟前
2分钟前
aaa5a123完成签到 ,获得积分10
2分钟前
脑洞疼应助粉色大卡皮采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634707
求助须知:如何正确求助?哪些是违规求助? 4731892
关于积分的说明 14988959
捐赠科研通 4792423
什么是DOI,文献DOI怎么找? 2559546
邀请新用户注册赠送积分活动 1519820
关于科研通互助平台的介绍 1479929