清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Enhanced Alternating Direction Method of Multipliers-Based Interior Point Method for Linear and Conic Optimization

内点法 圆锥截面 数学优化 数学 线性规划 点(几何) 非线性规划 计算机科学 算法 非线性系统 几何学 物理 量子力学
作者
Qi Bin Deng,Qing Feng,Wenzhi Gao,Debiao Ge,Bo Jiang,Yuntian Jiang,Jingsong Liu,Tianhao Liu,Chu Xue,Yinyu Ye,Chuwen Zhang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0017
摘要

The alternating-direction-method-of-multipliers-based (ADMM-based) interior point method, or ABIP method, is a hybrid algorithm that effectively combines interior point method (IPM) and first-order methods to achieve a performance boost in large-scale linear optimization. Different from traditional IPM that relies on computationally intensive Newton steps, the ABIP method applies ADMM to approximately solve the barrier penalized problem. However, similar to other first-order methods, this technique remains sensitive to condition number and inverse precision. In this paper, we provide an enhanced ABIP method with multiple improvements. First, we develop an ABIP method to solve the general linear conic optimization and establish the associated iteration complexity. Second, inspired by some existing methods, we develop different implementation strategies for the ABIP method, which substantially improve its performance in linear optimization. Finally, we conduct extensive numerical experiments in both synthetic and real-world data sets to demonstrate the empirical advantage of our developments. In particular, the enhanced ABIP method achieves a 5.8× reduction in the geometric mean of run time on 105 selected linear optimization instances from Netlib, and it exhibits advantages in certain structured problems, such as support vector machine and PageRank. However, the enhanced ABIP method still falls behind commercial solvers in many benchmarks, especially when high accuracy is desired. We posit that it can serve as a complementary tool alongside well-established solvers. History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms—Continuous. Funding: This research was supported by the National Natural Science Foundation of China [Grants 72394360, 72394364, 72394365, 72225009, 72171141, and 72150001] and by the Program for Innovative Research Team of Shanghai University of Finance and Economics. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0017 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0017 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪茶完成签到 ,获得积分10
5秒前
debu9完成签到,获得积分10
5秒前
开心向真完成签到,获得积分10
10秒前
好好好完成签到 ,获得积分10
10秒前
秋迎夏完成签到,获得积分10
15秒前
111完成签到 ,获得积分10
31秒前
lpp完成签到 ,获得积分10
32秒前
ppapp完成签到 ,获得积分10
47秒前
zhangnan完成签到 ,获得积分10
49秒前
53秒前
roger完成签到 ,获得积分10
54秒前
Magali发布了新的文献求助80
58秒前
淳于惜雪完成签到 ,获得积分10
58秒前
坦率的从波完成签到 ,获得积分0
59秒前
as完成签到 ,获得积分10
1分钟前
SciGPT应助千里草采纳,获得10
1分钟前
WSY完成签到 ,获得积分10
1分钟前
1分钟前
酷炫的煎饼完成签到 ,获得积分10
1分钟前
ChiahaoKuo完成签到 ,获得积分10
1分钟前
yzq完成签到,获得积分20
1分钟前
Amy完成签到 ,获得积分10
1分钟前
1分钟前
果酱发布了新的文献求助10
1分钟前
yzq关注了科研通微信公众号
1分钟前
自然亦凝完成签到,获得积分10
1分钟前
浮游应助求助的小鸟采纳,获得10
1分钟前
1分钟前
一通百通发布了新的文献求助30
1分钟前
果酱完成签到,获得积分10
1分钟前
隐形曼青应助周曦采纳,获得10
1分钟前
yzq发布了新的文献求助30
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
U87完成签到,获得积分10
2分钟前
2分钟前
周曦发布了新的文献求助10
2分钟前
邓代容完成签到 ,获得积分0
2分钟前
Salvator完成签到 ,获得积分10
2分钟前
涛1完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079238
求助须知:如何正确求助?哪些是违规求助? 4297595
关于积分的说明 13388491
捐赠科研通 4120645
什么是DOI,文献DOI怎么找? 2256742
邀请新用户注册赠送积分活动 1261052
关于科研通互助平台的介绍 1194981