已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Enhanced Alternating Direction Method of Multipliers-Based Interior Point Method for Linear and Conic Optimization

内点法 圆锥截面 数学优化 数学 线性规划 点(几何) 非线性规划 计算机科学 算法 非线性系统 几何学 物理 量子力学
作者
Qi Bin Deng,Qing Feng,Wenzhi Gao,Debiao Ge,Bo Jiang,Yuntian Jiang,Jingsong Liu,Tianhao Liu,Chu Xue,Yinyu Ye,Chuwen Zhang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0017
摘要

The alternating-direction-method-of-multipliers-based (ADMM-based) interior point method, or ABIP method, is a hybrid algorithm that effectively combines interior point method (IPM) and first-order methods to achieve a performance boost in large-scale linear optimization. Different from traditional IPM that relies on computationally intensive Newton steps, the ABIP method applies ADMM to approximately solve the barrier penalized problem. However, similar to other first-order methods, this technique remains sensitive to condition number and inverse precision. In this paper, we provide an enhanced ABIP method with multiple improvements. First, we develop an ABIP method to solve the general linear conic optimization and establish the associated iteration complexity. Second, inspired by some existing methods, we develop different implementation strategies for the ABIP method, which substantially improve its performance in linear optimization. Finally, we conduct extensive numerical experiments in both synthetic and real-world data sets to demonstrate the empirical advantage of our developments. In particular, the enhanced ABIP method achieves a 5.8× reduction in the geometric mean of run time on 105 selected linear optimization instances from Netlib, and it exhibits advantages in certain structured problems, such as support vector machine and PageRank. However, the enhanced ABIP method still falls behind commercial solvers in many benchmarks, especially when high accuracy is desired. We posit that it can serve as a complementary tool alongside well-established solvers. History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms—Continuous. Funding: This research was supported by the National Natural Science Foundation of China [Grants 72394360, 72394364, 72394365, 72225009, 72171141, and 72150001] and by the Program for Innovative Research Team of Shanghai University of Finance and Economics. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0017 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0017 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵安安发布了新的文献求助10
1秒前
踏实怜梦发布了新的文献求助30
1秒前
3秒前
尼罗河的南墙完成签到,获得积分10
5秒前
爆米花应助_shiy采纳,获得10
5秒前
7秒前
8秒前
9秒前
11秒前
13秒前
小松鼠发布了新的文献求助10
15秒前
15秒前
malenia发布了新的文献求助10
15秒前
骑驴找马完成签到,获得积分20
15秒前
16秒前
骑驴找马发布了新的文献求助10
18秒前
轻爱发布了新的文献求助10
19秒前
学习第一名完成签到,获得积分10
21秒前
21秒前
orixero应助CC采纳,获得10
21秒前
27秒前
27秒前
CC完成签到,获得积分10
29秒前
29秒前
30秒前
Owen应助明亮的海冬采纳,获得10
31秒前
郑鹏飞发布了新的文献求助10
33秒前
赵安安完成签到,获得积分10
34秒前
CC发布了新的文献求助10
35秒前
_shiy发布了新的文献求助10
35秒前
搜集达人应助xj采纳,获得30
36秒前
jsajdasjkf完成签到,获得积分10
39秒前
39秒前
TBLS关注了科研通微信公众号
41秒前
等的你呢完成签到 ,获得积分10
42秒前
44秒前
44秒前
麦子要当写手完成签到,获得积分20
45秒前
46秒前
_shiy完成签到,获得积分10
46秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883043
捐赠科研通 2468315
什么是DOI,文献DOI怎么找? 1314077
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956