材料科学
各向同性
离子
格子(音乐)
极限抗拉强度
联轴节(管道)
扩散
晶格扩散系数
化学物理
凝聚态物理
复合材料
热力学
有效扩散系数
有机化学
光学
磁共振成像
医学
物理
化学
声学
放射科
作者
Jiawei Luo,Jingchao Zhang,Zhaoxin Guo,Zhedong Liu,Chunying Wang,Haoran Jiang,Jinfeng Zhang,Longlong Fan,He Zhu,Yunhua Xu,Rui Liu,Jia Ding,Yanan Chen,Wenbin Hu
标识
DOI:10.1002/adma.202405956
摘要
Abstract Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO 4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the Li–Fe antisite defects and tensile strain into the lattice of LiFePO 4 . This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li–Fe antisite defects makes it feasible for Li + to move from the 4a site of the edge‐sharing octahedra across the ab plane to 4c site of corner‐sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first‐principles calculations, the unique multiscale coupling structure of Li–Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li + hopping, leading to excellent fast charging performance and cycling stability (high‐capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li + diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI