Machine learning for the advancement of genome-scale metabolic modeling

系统生物学 串联(数学) 人工智能 计算生物学 数据科学 计算机科学 生物 机器学习 组合数学 数学
作者
Pritam Kundu,Satyajit Beura,Suman Mondal,Amit Kumar Das,Amit Ghosh
出处
期刊:Biotechnology Advances [Elsevier BV]
卷期号:74: 108400-108400 被引量:3
标识
DOI:10.1016/j.biotechadv.2024.108400
摘要

Constraint-based modeling (CBM) has evolved as the core systems biology tool to map the interrelations between genotype, phenotype, and external environment. The recent advancement of high-throughput experimental approaches and multi-omics strategies has generated a plethora of new and precise information from wide-ranging biological domains. On the other hand, the continuously growing field of machine learning (ML) and its specialized branch of deep learning (DL) provide essential computational architectures for decoding complex and heterogeneous biological data. In recent years, both multi-omics and ML have assisted in the escalation of CBM. Condition-specific omics data, such as transcriptomics and proteomics, helped contextualize the model prediction while analyzing a particular phenotypic signature. At the same time, the advanced ML tools have eased the model reconstruction and analysis to increase the accuracy and prediction power. However, the development of these multi-disciplinary methodological frameworks mainly occurs independently, which limits the concatenation of biological knowledge from different domains. Hence, we have reviewed the potential of integrating multi-disciplinary tools and strategies from various fields, such as synthetic biology, CBM, omics, and ML, to explore the biochemical phenomenon beyond the conventional biological dogma. How the integrative knowledge of these intersected domains has improved bioengineering and biomedical applications has also been highlighted. We categorically explained the conventional genome-scale metabolic model (GEM) reconstruction tools and their improvement strategies through ML paradigms. Further, the crucial role of ML and DL in omics data restructuring for GEM development has also been briefly discussed. Finally, the case-study-based assessment of the state-of-the-art method for improving biomedical and metabolic engineering strategies has been elaborated. Therefore, this review demonstrates how integrating experimental and in silico strategies can help map the ever-expanding knowledge of biological systems driven by condition-specific cellular information. This multiview approach will elevate the application of ML-based CBM in the biomedical and bioengineering fields for the betterment of society and the environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xuan完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
陶醉完成签到,获得积分10
3秒前
humorr完成签到,获得积分10
3秒前
柒辞完成签到,获得积分10
3秒前
天马行空完成签到,获得积分10
3秒前
Ying完成签到,获得积分10
6秒前
6秒前
chen完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
彬墩墩完成签到,获得积分10
7秒前
结实山水完成签到 ,获得积分10
8秒前
Tici完成签到,获得积分10
8秒前
冬狩完成签到,获得积分10
8秒前
洁净的寒安完成签到,获得积分10
8秒前
刘星宇完成签到,获得积分10
10秒前
10秒前
10秒前
头疼完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
Zoe完成签到 ,获得积分10
12秒前
英姑应助白衣采纳,获得10
12秒前
eagle发布了新的文献求助10
12秒前
明亮夏旋完成签到,获得积分10
14秒前
14秒前
15秒前
en发布了新的文献求助10
15秒前
15秒前
完美夜春完成签到 ,获得积分10
16秒前
Zhidong Wei发布了新的文献求助10
16秒前
老鼠想吃猫完成签到,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661303
求助须知:如何正确求助?哪些是违规求助? 3222367
关于积分的说明 9745047
捐赠科研通 2931980
什么是DOI,文献DOI怎么找? 1605350
邀请新用户注册赠送积分活动 757854
科研通“疑难数据库(出版商)”最低求助积分说明 734569