已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Residual Fusion Probabilistic Knowledge Distillation for Speech Enhancement

概率逻辑 计算机科学 残余物 加权 人工智能 机器学习 成对比较 蒸馏 卷积神经网络 深度学习 帧(网络) 算法 医学 电信 有机化学 放射科 化学
作者
Jiaming Cheng,Ruiyu Liang,Lin Zhou,Li Zhao,Chengwei Huang,Björn W. Schuller
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2680-2691
标识
DOI:10.1109/taslp.2024.3395978
摘要

In recent years, a great deal of research has focused on in developing neural network (NN)-based speech enhancement (SE) models, which have achieved promising results. However, NN-based models typically require expensive computations to achieve remarkable performance, constraining their deployment in real-world scenarios, especially when hardware resources are limited or when latency requirements are strict. To reduce this computational burden, we propose a unified residual fusion probabilistic knowledge distillation (KD) method for the SE task, in which knowledge is transferred from a deep teacher to a shallower student model. Previous KD approaches commonly focused on narrowing the output distances between teachers and students, but research on the intermediate representation of these models is lacking. In this paper, we first study the cross-layer residual feature fusion strategy, which enables the student model to distill knowledge contained in multiple teacher layers from shallow to deep. Second, a frame weighting probabilistic distillation loss is proposed to assign more emphasis to frames containing essential information and preserve pairwise probabilistic similarities in the representation space. The proposed distillation framework is applied to the dual-path dilated convolutional recurrent network (DPDCRN), which won the championship of the SE track in the L3DAS23 challenge. Extensive experiments are conducted on single-channel and multichannel SE datasets. Objective evaluations show that the proposed KD strategy outperforms other distillation methods and considerably improves the enhancement effect of the low-complexity student model (with only 17% of the teacher's parameters).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Swear完成签到 ,获得积分10
1秒前
心灵美鑫完成签到 ,获得积分10
2秒前
喜悦芝麻完成签到 ,获得积分10
2秒前
Rodin完成签到,获得积分10
3秒前
充电宝应助swh采纳,获得10
6秒前
7秒前
NexusExplorer应助WeihaoJin采纳,获得10
9秒前
义气幼珊完成签到 ,获得积分10
10秒前
tracey完成签到 ,获得积分10
10秒前
一一一多完成签到 ,获得积分10
12秒前
懒羊羊发布了新的文献求助10
12秒前
贪玩小小完成签到 ,获得积分10
12秒前
13秒前
TiAmo完成签到 ,获得积分10
13秒前
Ray羽曦~完成签到 ,获得积分10
16秒前
酷波er应助midokaori采纳,获得10
16秒前
swh发布了新的文献求助10
17秒前
nuliguan完成签到 ,获得积分10
19秒前
kelien1205完成签到 ,获得积分10
21秒前
机灵的咖啡完成签到,获得积分10
22秒前
23秒前
伶俐的金连完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
两袖清风完成签到 ,获得积分10
25秒前
骆十八完成签到,获得积分10
26秒前
kingcoffee完成签到 ,获得积分10
26秒前
ktw完成签到,获得积分10
27秒前
小铃铛完成签到,获得积分10
27秒前
发财小鱼完成签到 ,获得积分10
27秒前
懒羊羊完成签到,获得积分10
27秒前
midokaori发布了新的文献求助10
28秒前
29秒前
严明完成签到,获得积分10
30秒前
严明完成签到,获得积分10
30秒前
31秒前
g143完成签到,获得积分10
31秒前
乳酸菌小面包完成签到,获得积分10
31秒前
短巷完成签到 ,获得积分10
31秒前
kai chen完成签到 ,获得积分0
32秒前
暗号完成签到 ,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956932
求助须知:如何正确求助?哪些是违规求助? 3502968
关于积分的说明 11110867
捐赠科研通 3233954
什么是DOI,文献DOI怎么找? 1787676
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802223