Modulating single-atom sulfur-vacancy defect in MoS2-x catalysts to boost cathode redox kinetics for vanadium flow batteries

材料科学 空位缺陷 氧化还原 阴极 动力学 密度泛函理论 电化学 化学物理 纳米技术 化学工程 电极 物理化学 冶金 计算化学 结晶学 化学 物理 量子力学 工程类
作者
Xihao Zhang,Lansong Liu,Kaiyue Zhang,Denghua Zhang,Shaoyu Hou,Jinling Zhao,Hongxiang He,Xiaoliang Wu,Jianguo Liu,Chuanwei Yan
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:69: 103442-103442 被引量:6
标识
DOI:10.1016/j.ensm.2024.103442
摘要

Vanadium flow batteries (VFBs) have great potential for application in energy storage systems. However, the sluggish cathode redox kinetics still greatly restricts their operation at high current densities. Herein, we boost cathode redox chemistry by modulating single-atom sulfur-vacancy (S-vacancy) defect of MoS2-x in-situ grown on carbon felts via a facile chemical etching method. Firstly, the optimized S-vacancy concentration is figured out via high throughput calculations based on d-band center theory. By precisely controlling etching duration, we achieve a tailored S-vacancy concentration, leading to highly dispersed S-vacancies, increased specific surface area, and improved hydrophilicity. Electrochemical characterizations demonstrate that optimized S-vacancy state can significantly facilitate the VO2+/VO2+ kinetics. Moreover, analysis of electron density difference and integrated crystal orbital Hamiltonian group further reveals that dispersed S-vacancy distribution also contribute to efficient surface electronic structure and enhanced adsorption process. Benefiting from enhanced VO2+/VO2+ kinetics, VFB single cell achieves a superior EE of 78.73% at 300 mA cm−2 and is able to last for 500 cycles without decay. This work demonstrates the promising potential of single-atom S-vacancies catalysts in the fabrication of flow battery electrodes and more importantly sheds light on the fundamental modulation essence of d-band center in MoS2-x towards enhanced cathode redox kinetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tivyg'lk发布了新的文献求助10
1秒前
充电宝应助mzf采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助30
1秒前
NJP发布了新的文献求助10
1秒前
逆境完成签到,获得积分10
2秒前
fighting发布了新的文献求助10
2秒前
林洛沁发布了新的文献求助10
2秒前
ABC发布了新的文献求助10
3秒前
4秒前
damai完成签到,获得积分10
4秒前
充电宝应助leeyc采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得30
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
隐形幻竹发布了新的文献求助30
7秒前
威武道罡完成签到,获得积分10
7秒前
7秒前
8秒前
CAOHOU应助胡图图采纳,获得10
8秒前
ATM完成签到,获得积分10
8秒前
SciGPT应助九秋霜采纳,获得10
8秒前
天天快乐应助狂野忆文采纳,获得10
9秒前
避尘完成签到 ,获得积分10
9秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798