Modulating single-atom sulfur-vacancy defect in MoS2-x catalysts to boost cathode redox kinetics for vanadium flow batteries

材料科学 空位缺陷 氧化还原 阴极 动力学 密度泛函理论 电化学 化学物理 纳米技术 化学工程 电极 物理化学 冶金 计算化学 结晶学 化学 工程类 物理 量子力学
作者
Xihao Zhang,Lansong Liu,Kaiyue Zhang,Denghua Zhang,Shaoyu Hou,Jinling Zhao,Hongxiang He,Xiaoliang Wu,Jianguo Liu,Chuanwei Yan
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:69: 103442-103442 被引量:17
标识
DOI:10.1016/j.ensm.2024.103442
摘要

Vanadium flow batteries (VFBs) have great potential for application in energy storage systems. However, the sluggish cathode redox kinetics still greatly restricts their operation at high current densities. Herein, we boost cathode redox chemistry by modulating single-atom sulfur-vacancy (S-vacancy) defect of MoS2-x in-situ grown on carbon felts via a facile chemical etching method. Firstly, the optimized S-vacancy concentration is figured out via high throughput calculations based on d-band center theory. By precisely controlling etching duration, we achieve a tailored S-vacancy concentration, leading to highly dispersed S-vacancies, increased specific surface area, and improved hydrophilicity. Electrochemical characterizations demonstrate that optimized S-vacancy state can significantly facilitate the VO2+/VO2+ kinetics. Moreover, analysis of electron density difference and integrated crystal orbital Hamiltonian group further reveals that dispersed S-vacancy distribution also contribute to efficient surface electronic structure and enhanced adsorption process. Benefiting from enhanced VO2+/VO2+ kinetics, VFB single cell achieves a superior EE of 78.73% at 300 mA cm−2 and is able to last for 500 cycles without decay. This work demonstrates the promising potential of single-atom S-vacancies catalysts in the fabrication of flow battery electrodes and more importantly sheds light on the fundamental modulation essence of d-band center in MoS2-x towards enhanced cathode redox kinetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助NiNi采纳,获得10
刚刚
刚刚
内向苠完成签到 ,获得积分10
1秒前
2秒前
廷聿完成签到,获得积分10
2秒前
3秒前
FashionBoy应助舒适可乐采纳,获得10
4秒前
4秒前
6秒前
9秒前
奋斗忆南完成签到 ,获得积分20
9秒前
Echo完成签到,获得积分10
9秒前
wangy发布了新的文献求助10
11秒前
11秒前
14秒前
14秒前
汉堡包应助蚂蚁的奋斗采纳,获得10
14秒前
徐海浪发布了新的文献求助10
14秒前
15秒前
15秒前
唐俊杰完成签到,获得积分10
16秒前
16秒前
刻苦的糖豆完成签到,获得积分10
17秒前
完美世界应助枣树先生采纳,获得10
17秒前
miaolingcool发布了新的文献求助10
19秒前
111完成签到,获得积分10
20秒前
aaaaaa发布了新的文献求助10
20秒前
20秒前
ZZH发布了新的文献求助10
21秒前
22秒前
Nnaao发布了新的文献求助10
22秒前
自由蓉发布了新的文献求助10
23秒前
23秒前
23秒前
25秒前
wangy完成签到,获得积分10
27秒前
枣树先生发布了新的文献求助10
27秒前
27秒前
28秒前
科研微微发布了新的文献求助10
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207577
求助须知:如何正确求助?哪些是违规求助? 4385457
关于积分的说明 13656909
捐赠科研通 4244029
什么是DOI,文献DOI怎么找? 2328560
邀请新用户注册赠送积分活动 1326245
关于科研通互助平台的介绍 1278450