Interatomic potentials for graphene reinforced metal composites: Optimal choice

石墨烯 复合材料 材料科学 原子间势 金属 分子动力学 计算化学 纳米技术 化学 冶金
作者
Liliya R. Safina,Elizaveta A. Rozhnova,Karina A. Krylova,Ramil T. Murzaev,Julia A. Baimova
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:301: 109235-109235 被引量:3
标识
DOI:10.1016/j.cpc.2024.109235
摘要

Graphene reinforced metal matrix composites represent a promising class of materials for high-strength surface coatings because of their high strength and ductility. This study reports the application of different interatomic potentials to correctly describe the interaction between graphene and metals (Al, Cu, Ni, and Ti) by molecular dynamics. Both simple pair potentials, such as Lennard-Jones and Morse, and many-body potentials, such as bond order potential are applied for the simulation of a graphene/metal system at room temperature. Three different structures are considered: (i) graphene interacting with one metal atom; (ii) graphene interacting with a metal nanoparticle, and (iii) three-dimensional graphene network filled with metal nanoparticles. We first determine the potential energy that any graphene/metal system can reach during exposure at 300 K; then, we analyze the interaction dynamics for all considered systems and all potentials. A considerable difference in the interaction between metal nanoparticles with planar and folded graphene was found. For graphene/Ni, graphene/Cu, and graphene/Ti, the Lennard-Jones and Morse potentials yield accurate energetic and structural properties of the studied structures; they also describe interaction in the graphene/metal system in a similar way, at variance with bond-order potential. For graphene/Al, the Tersoff and Morse potentials describe the interaction better than Lennard-Jones. For the simulation of graphene/Me system, the optimal choice of the potential for different structures is of crucial importance. The presented analysis of the interatomic potentials appears to be promising for realistic and accurate simulations of graphene reinforced metal composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一条贤与完成签到,获得积分20
刚刚
1秒前
1秒前
yl完成签到,获得积分10
1秒前
泊声完成签到,获得积分20
2秒前
su发布了新的文献求助10
2秒前
Island发布了新的文献求助10
2秒前
科研小民工应助一枪入魂采纳,获得30
2秒前
3秒前
3秒前
科研通AI2S应助gwh采纳,获得10
4秒前
4秒前
4秒前
4秒前
隐形曼青应助zhihan采纳,获得10
6秒前
6秒前
xylxyl完成签到,获得积分10
6秒前
7秒前
ZBN完成签到,获得积分10
7秒前
222关闭了222文献求助
8秒前
chinh完成签到,获得积分10
8秒前
钮祜禄废废完成签到,获得积分10
8秒前
8秒前
曾经富完成签到,获得积分10
10秒前
酷酷海豚完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
青青完成签到 ,获得积分10
14秒前
Chan0501发布了新的文献求助10
14秒前
昭昭完成签到,获得积分10
15秒前
SCI发布了新的文献求助10
15秒前
卓然完成签到,获得积分10
15秒前
李来仪发布了新的文献求助10
16秒前
17秒前
菲菲呀完成签到,获得积分10
17秒前
Rrr发布了新的文献求助10
17秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794