弹道
磁道(磁盘驱动器)
控制理论(社会学)
控制器(灌溉)
计算机科学
大地测量学
人工智能
物理
地质学
控制(管理)
生物
天文
农学
操作系统
作者
Cheng Hu,Lei Xie,Zhiming Zhang,Haokun Xiong
标识
DOI:10.1080/00423114.2024.2347494
摘要
In rally racing, a high sideslip cornering technique known as drifting is employed to minimise the lap time. However, for autonomous vehicles, tracking the trajectory while drifting is a challenging control problem due to the conflict between the two objectives. This paper proposes a novel model predictive controller (MPC) with two operation modes to address this conflict. In Mode 1, fuzzy expert strategies combined with the lateral error are designed to calculate the drift equilibrium point. Subsequently, the linear MPC controller is utilised to achieve quick adjustments of the lateral error. In Mode 2, terminal state constraints and error constraints are added to the MPC optimisation problem. The stability of the MPC controller is guaranteed to keep the vehicle within the expected error range. Finally, a comparison between the existing expert controller and the proposed controller is carried out on both the CarSim platform and a 1:10 scale race car. The results demonstrate that the proposed controller outperforms the existing expert controller in terms of tracking performance and drift stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI