Development and Validation of a Novel Machine Learning Model to Predict the Survival of Patients with Gastrointestinal Neuroendocrine Neoplasms

神经内分泌肿瘤 内科学 医学 内分泌学 肿瘤科 神经科学 心理学
作者
Si Liu,Yunxiang Chen,Bing Dai,Li Chen
出处
期刊:Neuroendocrinology [Karger Publishers]
卷期号:114 (8): 733-748
标识
DOI:10.1159/000539187
摘要

<b><i>Introduction:</i></b> Well-calibrated models for personalized prognostication of patients with gastrointestinal neuroendocrine neoplasms (GINENs) are limited. This study aimed to develop and validate a machine-learning model to predict the survival of patients with GINENs. <b><i>Methods:</i></b> Oblique random survival forest (ORSF) model, Cox proportional hazard risk model, Cox model with least absolute shrinkage and selection operator penalization, CoxBoost, Survival Gradient Boosting Machine, Extreme Gradient Boosting survival regression, DeepHit, DeepSurv, DNNSurv, logistic-hazard model, and PC-hazard model were compared. We further tuned hyperparameters and selected variables for the best-performing ORSF. Then, the final ORSF model was validated. <b><i>Results:</i></b> A total of 43,444 patients with GINENs were included. The median (interquartile range) survival time was 53 (19–102) months. The ORSF model performed best, in which age, histology, M stage, tumor size, primary tumor site, sex, tumor number, surgery, lymph nodes removed, N stage, race, and grade were ranked as important variables. However, chemotherapy and radiotherapy were not necessary for the ORSF model. The ORSF model had an overall C index of 0.86 (95% confidence interval, 0.85–0.87). The area under the receiver operation curves at 1, 3, 5, and 10 years were 0.91, 0.89, 0.87, and 0.80, respectively. The decision curve analysis showed superior clinical usefulness of the ORSF model than the American Joint Committee on Cancer Stage. A nomogram and an online tool were given. <b><i>Conclusion:</i></b> The machine learning ORSF model could precisely predict the survival of patients with GINENs, with the ability to identify patients at high risk for death and probably guide clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DY完成签到,获得积分10
刚刚
manmanzhong完成签到 ,获得积分10
1秒前
wipmzxu完成签到,获得积分10
2秒前
2秒前
yiyi完成签到,获得积分10
3秒前
踏水追风完成签到,获得积分10
4秒前
youili完成签到 ,获得积分10
4秒前
6秒前
食草味完成签到,获得积分20
7秒前
凌兰完成签到 ,获得积分10
7秒前
XZ完成签到,获得积分10
8秒前
小羊完成签到 ,获得积分10
8秒前
陈牛逼完成签到 ,获得积分10
8秒前
斯文败类应助adeno采纳,获得10
9秒前
积极废物完成签到 ,获得积分10
10秒前
深情安青应助贾不可采纳,获得10
10秒前
shimenwanzhao完成签到 ,获得积分0
11秒前
苻醉山完成签到 ,获得积分0
14秒前
DezhaoWang完成签到,获得积分10
14秒前
memory完成签到,获得积分10
14秒前
山神厘子完成签到,获得积分10
14秒前
犹豫山河完成签到,获得积分20
18秒前
leo完成签到 ,获得积分10
18秒前
hyf完成签到 ,获得积分10
19秒前
双青豆完成签到 ,获得积分10
21秒前
里埃尔塞因斯完成签到 ,获得积分10
21秒前
tetrakis完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
彭于彦祖完成签到,获得积分0
25秒前
王QQ完成签到 ,获得积分10
25秒前
和风完成签到 ,获得积分10
25秒前
万能图书馆应助贾不可采纳,获得10
25秒前
CLY完成签到,获得积分10
26秒前
miaomiao发布了新的文献求助100
30秒前
三杠完成签到 ,获得积分10
30秒前
嗒嗒完成签到,获得积分10
30秒前
Carry发布了新的文献求助10
30秒前
星辰大海应助why采纳,获得10
31秒前
贪玩的醉波完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027