Large Foundation Model Empowered Discriminative Underwater Image Enhancement

水下 判别式 计算机科学 基础(证据) 遥感 人工智能 计算机视觉 地质学 地理 海洋学 考古
作者
Hao Wang,Kevin Köser,Peng Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-17 被引量:52
标识
DOI:10.1109/tgrs.2025.3525962
摘要

The underwater color disparity is an important cue for enhancing an underwater image. Applying the underwater color disparity indiscriminately to the entire underwater image tends to give rise to foreground-background crosstalk with either excessive foreground or insufficient background enhancement. To address the discriminativeness between underwater color disparities in foreground and background regions, we develop a discriminative underwater image enhancement method empowered by large foundation model technology. We first utilize the Segment Anything Model to generate segmentation masks, dividing the underwater image into foreground and background regions. This enables accurate foreground-background separation. Then, we conduct adaptive color compensation and fusion to improve the color histogram similarity for foreground and background regions separately. This corrects color deviations and improves contrasts in a discriminative manner that avoids the foreground-background crosstalk. Finally, we propose high-frequency edge fusion to extract high-frequency components from both the original underwater image and the fused image, and then fuse these components to obtain the final enhanced image. This eliminates blurred details arising from the discriminative processing of foreground and background regions. Our method represents the pioneering application of large foundation model technology to empower underwater image enhancement. Experimental results indicate that our method outperforms nine state-of-the-art underwater image enhancement methods in visual quality, achieves superior results across five underwater image quality evaluation metrics on three underwater image datasets, and is beneficial for practical applications such as underwater feature matching. We release our code at https://gitee.com/wanghaoupc/UIE SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
vicin完成签到,获得积分10
刚刚
jiangwei完成签到,获得积分10
刚刚
QMCL完成签到,获得积分0
刚刚
farewell完成签到 ,获得积分10
刚刚
虚幻的曼冬应助啦啦啦采纳,获得10
1秒前
畅快代柔发布了新的文献求助30
1秒前
ly发布了新的文献求助10
1秒前
zyl发布了新的文献求助10
1秒前
丘比特应助ning采纳,获得10
1秒前
可爱的函函应助27采纳,获得10
1秒前
Roxy发布了新的文献求助10
2秒前
共享精神应助通科研采纳,获得10
2秒前
3秒前
3秒前
3秒前
可爱的函函应助秦始皇采纳,获得10
4秒前
梅花易数完成签到,获得积分10
4秒前
糊涂塌客发布了新的文献求助10
5秒前
andy_lee完成签到,获得积分10
5秒前
咿咿发布了新的文献求助10
5秒前
小蘑菇应助hhh采纳,获得10
7秒前
7秒前
7秒前
文艺的白开水完成签到,获得积分10
8秒前
wanci应助Roxy采纳,获得10
8秒前
Ava应助511采纳,获得10
8秒前
粗心的无剑完成签到 ,获得积分10
8秒前
9秒前
彭于晏应助sll采纳,获得10
9秒前
罗兴鲜发布了新的文献求助10
10秒前
10秒前
10秒前
核桃应助科研通管家采纳,获得30
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
11秒前
小张应助科研通管家采纳,获得10
11秒前
popvich应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237