Large Foundation Model Empowered Discriminative Underwater Image Enhancement

水下 判别式 计算机科学 基础(证据) 遥感 人工智能 计算机视觉 地质学 地理 海洋学 考古
作者
Hao Wang,Kevin Köser,Peng Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-17 被引量:52
标识
DOI:10.1109/tgrs.2025.3525962
摘要

The underwater color disparity is an important cue for enhancing an underwater image. Applying the underwater color disparity indiscriminately to the entire underwater image tends to give rise to foreground-background crosstalk with either excessive foreground or insufficient background enhancement. To address the discriminativeness between underwater color disparities in foreground and background regions, we develop a discriminative underwater image enhancement method empowered by large foundation model technology. We first utilize the Segment Anything Model to generate segmentation masks, dividing the underwater image into foreground and background regions. This enables accurate foreground-background separation. Then, we conduct adaptive color compensation and fusion to improve the color histogram similarity for foreground and background regions separately. This corrects color deviations and improves contrasts in a discriminative manner that avoids the foreground-background crosstalk. Finally, we propose high-frequency edge fusion to extract high-frequency components from both the original underwater image and the fused image, and then fuse these components to obtain the final enhanced image. This eliminates blurred details arising from the discriminative processing of foreground and background regions. Our method represents the pioneering application of large foundation model technology to empower underwater image enhancement. Experimental results indicate that our method outperforms nine state-of-the-art underwater image enhancement methods in visual quality, achieves superior results across five underwater image quality evaluation metrics on three underwater image datasets, and is beneficial for practical applications such as underwater feature matching. We release our code at https://gitee.com/wanghaoupc/UIE SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
公孙玲珑发布了新的文献求助10
1秒前
羊羊羊完成签到,获得积分10
1秒前
caizhiwei发布了新的文献求助10
1秒前
orixero应助XU徐采纳,获得10
2秒前
efww完成签到,获得积分20
2秒前
赘婿应助zuoqibin采纳,获得10
3秒前
科研通AI6应助带回家反馈采纳,获得10
3秒前
3秒前
4秒前
Jyy77完成签到 ,获得积分10
4秒前
4秒前
hhh发布了新的文献求助10
5秒前
5秒前
药成功给药成功的求助进行了留言
6秒前
酷波er应助pgdddh采纳,获得10
7秒前
8秒前
8秒前
Akim应助无敌小b采纳,获得10
9秒前
Amelk发布了新的文献求助10
9秒前
9秒前
王木木完成签到,获得积分10
9秒前
9秒前
10秒前
yy完成签到,获得积分10
10秒前
科研通AI6应助顶针采纳,获得10
10秒前
12秒前
九bai完成签到 ,获得积分10
12秒前
Wsyyy发布了新的文献求助10
13秒前
13秒前
林声发布了新的文献求助10
13秒前
14秒前
hinelson发布了新的文献求助10
14秒前
14秒前
丫丫发布了新的文献求助10
14秒前
caizhiwei发布了新的文献求助10
14秒前
14秒前
独特的新之关注了科研通微信公众号
16秒前
17秒前
坚定的灭龙关注了科研通微信公众号
18秒前
XU徐发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481527
求助须知:如何正确求助?哪些是违规求助? 4582574
关于积分的说明 14385611
捐赠科研通 4511195
什么是DOI,文献DOI怎么找? 2472283
邀请新用户注册赠送积分活动 1458581
关于科研通互助平台的介绍 1432094