Tailoring Non‐Covalent Interaction Via Single Atom to Boost Interfacial Charge Transfer Toward Photoelectrochemical Water Oxidation

光电流 共价键 材料科学 基质(水族馆) 化学物理 分解水 吸收(声学) Atom(片上系统) 卟啉 纳米技术 光化学 催化作用 光电子学 化学 光催化 有机化学 海洋学 地质学 嵌入式系统 复合材料 计算机科学
作者
Chuanqi Zhang,Yue‐Yue Wang,Wenming Sun,Zhaorui Hua,Zicong Zhang,Shuyan Gong,Dingsheng Wang,Yang Tian
出处
期刊:Advanced Materials [Wiley]
卷期号:37 (4): e2410632-e2410632 被引量:20
标识
DOI:10.1002/adma.202410632
摘要

Abstract Photoelectrochemical (PEC) water splitting for hydrogen generation holds immense potential for addressing environmental and energy crises. Tailoring non‐covalent interaction via a single atom is anticipated to realize prominent hole extracting facilitating PEC performance, but it has never been reported. In this study, single atom Co‐N 4 is coordinated with 5‐fluoroanthranilic acid (FAA) molecules, then used as a non‐covalent hole‐extracting layer on a BiVO 4 substrate. Experiments including X‐ray absorption fine spectra, Kelvin probe force microscopy, transient absorption, and theoretical calculation demonstrate the FAA coordination alters the local configuration of the central Co atom, adjusting the interfacial non‐covalent interaction, thereby reducing the barrier of charge transfer between BiVO 4 and the hole‐extracting layer. Consequently, photogenerated carriers are more effectively separated, and the PEC water oxidation performance is significantly enhanced with the photocurrent density of 5.47 mA cm −2 at 1.23 V versus RHE, much higher than those of previously reported BiVO 4 photoanodes composited with porphyrin‐based compounds. Experiments and theoretical simulation confirm that the boosted PEC performance originates from exceptional interfacial charge transfer rather than surface catalysis dynamic. This study provides an efficient strategy for tailoring non‐covalent interaction by regulating single‐atom coordination and promoting hole extract to boost PEC water oxidation activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松博超发布了新的文献求助10
1秒前
qi0625完成签到,获得积分10
2秒前
2秒前
Lucas应助秧秧采纳,获得10
2秒前
4秒前
琪筱发布了新的文献求助10
4秒前
舒适小笼包完成签到,获得积分10
4秒前
5秒前
ding应助die采纳,获得30
5秒前
浪子应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
执着谷兰应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
stiger应助科研通管家采纳,获得20
7秒前
7秒前
浪子应助科研通管家采纳,获得30
7秒前
7秒前
多晒太阳发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709