A deep-learning approach to parameter fitting for a lithium metal battery cycling model, validated with experimental cell cycling time series

自行车 电池(电) 金属锂 系列(地层学) 锂(药物) 计算机科学 地质学 医学 热力学 物理 古生物学 功率(物理) 考古 内分泌学 历史
作者
Maria Grazia Quarta,Ivonne Sgura,Elisa Emanuele,Jacopo Strada,Raquel Barreira,Benedetto Bozzini
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-87830-x
摘要

Symmetric coin cell cycling is an important tool for the analysis of battery materials, enabling the study of electrode/electrolyte systems under realistic operating conditions. In the case of metal lithium SEI growth and shape changes, cycling studies are especially important to assess the impact of the alternation of anodic–cathodic polarization with the relevant electrolyte geometry and mass-transport conditions. Notwithstanding notable progress in analysis of lithium/lithium symmetric coin cell cycling data, on the one hand, some aspects of the cell electrochemical response still warrant investigation, and, on the other hand, very limited quantitative use is made of large corpora of experimental data generated in electrochemical experiments. This study contributes to shedding light on this highly technologically relevant problem, thanks to the combination of quantitative data exploitation and Partial Differential Equation (PDE) modelling for metal anode cycling. Toward this goal, we propose the use of a Convolutional Neural Network-Long-Short Term Memory (CNN-LSTM) to identify relevant physico-chemical parameters in the PDE model and to describe the behaviour of simulated and experimental charge–discharge profiles. Specifically, we have carried out parameter identification tasks for experimental data regarding the cycling of symmetric coin cells with Li chips as electrodes and LP30 electrolyte. Representative selection of numerical results highlights the advantages of this new approach with respect to traditional Least Squares fitting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狼牙月完成签到,获得积分10
刚刚
刚刚
1秒前
彭于晏应助reed1220采纳,获得10
1秒前
1秒前
2秒前
毕春宇发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
能干冰菱发布了新的文献求助10
5秒前
5秒前
5秒前
图书馆发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
紧张的芷发布了新的文献求助10
6秒前
kk完成签到,获得积分10
7秒前
7秒前
可爱以松发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
cimy完成签到,获得积分10
10秒前
熙欢完成签到,获得积分10
10秒前
10秒前
10秒前
tad81发布了新的文献求助20
10秒前
11秒前
文医生完成签到,获得积分10
12秒前
壮观问寒发布了新的文献求助10
12秒前
cm发布了新的文献求助10
13秒前
13秒前
科研通AI5应助qinrunkuan采纳,获得10
13秒前
14秒前
14秒前
张浩威完成签到,获得积分10
15秒前
ronnie完成签到,获得积分10
15秒前
淡然雁易发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514884
求助须知:如何正确求助?哪些是违规求助? 3097246
关于积分的说明 9234750
捐赠科研通 2792216
什么是DOI,文献DOI怎么找? 1532342
邀请新用户注册赠送积分活动 711969
科研通“疑难数据库(出版商)”最低求助积分说明 707062