Multitask Learning and Bandits via Robust Statistics

计算机科学 估计员 后悔 Lasso(编程语言) 背景(考古学) 自举(财务) 机器学习 嵌入 人工智能 数学 计量经济学 统计 古生物学 万维网 生物
作者
Xu Kan,Hamsa Bastani
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2022.00490
摘要

Decision makers often simultaneously face many related but heterogeneous learning problems. For instance, a large retailer may wish to learn product demand at different stores to solve pricing or inventory problems, making it desirable to learn jointly for stores serving similar customers; alternatively, a hospital network may wish to learn patient risk at different providers to allocate personalized interventions, making it desirable to learn jointly for hospitals serving similar patient populations. Motivated by real data sets, we study a natural setting where the unknown parameter in each learning instance can be decomposed into a shared global parameter plus a sparse instance-specific term. We propose a novel two-stage multitask learning estimator that exploits this structure in a sample-efficient way, using a unique combination of robust statistics (to learn across similar instances) and LASSO regression (to debias the results). Our estimator yields improved sample complexity bounds in the feature dimension d relative to commonly employed estimators; this improvement is exponential for “data-poor” instances, which benefit the most from multitask learning. We illustrate the utility of these results for online learning by embedding our multitask estimator within simultaneous contextual bandit algorithms. We specify a dynamic calibration of our estimator to appropriately balance the bias-variance trade-off over time, improving the resulting regret bounds in the context dimension d. Finally, we illustrate the value of our approach on synthetic and real data sets. This paper was accepted by J. George Shanthikumar, data science. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.00490 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吃猫的鱼完成签到,获得积分10
1秒前
脑洞疼应助润润轩轩采纳,获得10
2秒前
刘文静完成签到,获得积分10
3秒前
Southluuu发布了新的文献求助10
3秒前
chenjyuu发布了新的文献求助10
3秒前
3秒前
粗暴的仙人掌完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
logic发布了新的文献求助10
4秒前
习习应助生动的雨竹采纳,获得10
4秒前
bo完成签到 ,获得积分10
4秒前
迟大猫应助啵乐乐采纳,获得10
5秒前
安雯完成签到 ,获得积分10
5秒前
HuLL完成签到,获得积分10
5秒前
Yolo完成签到 ,获得积分10
5秒前
难过的慕青完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
8秒前
无花果应助sunzhiyu233采纳,获得10
8秒前
韭黄完成签到,获得积分20
8秒前
9秒前
诚c发布了新的文献求助10
9秒前
自然秋柳完成签到 ,获得积分10
9秒前
我是老大应助经法采纳,获得10
9秒前
默默的皮牙子应助经法采纳,获得10
9秒前
orixero应助经法采纳,获得10
9秒前
小马甲应助经法采纳,获得10
9秒前
柚子成精应助经法采纳,获得10
10秒前
小蘑菇应助经法采纳,获得10
10秒前
深情安青应助经法采纳,获得10
10秒前
李爱国应助经法采纳,获得10
10秒前
共享精神应助经法采纳,获得10
10秒前
yyyyyy完成签到 ,获得积分10
10秒前
LL完成签到,获得积分10
10秒前
ziyiziyi发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759