Empirical correction decomposition method (ECDM): enhancing accuracy of quantitative measurement in spectral CT

成像体模 校准 分解 计算机科学 数学 生物系统 统计 光学 物理 化学 有机化学 生物
作者
Chengmin Wang,Zhe Wang,Mohan Li,Yuedong Liu,Xiaomei Zhang,Cunfeng Wei,Wei Long
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad9a4a
摘要

Abstract Objective. Spectral CT and material decomposition methods are crucial for precise material identification and quantitative composition analysis in preclinical research and clinical diagnosis. The empirical material decomposition method is widely used for its straightforward modeling approach, independence from spectral and detector response knowledge, and operational convenience. However, this method has limited decomposition accuracy and its precision depends on the choice of calibration phantoms. Approach. To address these issues, we propose an empirical correction decomposition method (ECDM). The innovation of this method lies in its ability to conveniently estimate and correct empirical decomposition errors using a specially designed calibration phantom. First, the specially designed calibration phantom for ECDM undergoes empirical decomposition initially to establish the relationship between decomposition errors and decomposition values. Then, ECDM estimates and corrects the error of empirical decomposition values. Main results. In the phantom experiments, ECDM improves the decomposition accuracy of empirical methods, effectively reducing the different decomposition errors caused by four different sizes of calibration phantoms from a maximum of 144\% to within 25\%. In the mouse experiments, ECDM achieves accurate quantification of contrast agents in biological tissues, outperforming the other two methods. The absolute error percentages of ECDM in the decomposition results of the two standard iodine solutions are both less than 5\%. Significance. ECDM significantly improves decomposition accuracy and reduces the impact of the size of the empirical calibration phantom. Overall, our method based on spectral CT is very convenient and practical for the quantitative measurement in biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸡腿战神发布了新的文献求助10
刚刚
刚刚
HHH完成签到,获得积分10
刚刚
科研通AI2S应助七七采纳,获得10
刚刚
万能图书馆应助猫车高手采纳,获得10
1秒前
萌新发布了新的文献求助10
1秒前
2秒前
小蘑菇应助酷炫的听寒采纳,获得10
2秒前
在水一方应助guzhfia采纳,获得10
2秒前
CR7发布了新的文献求助10
3秒前
3秒前
无花果应助大头有大智慧采纳,获得10
4秒前
李爱国应助coolkid采纳,获得10
4秒前
浮游应助TS采纳,获得10
4秒前
tzy02发布了新的文献求助10
5秒前
5秒前
Phinny发布了新的文献求助10
5秒前
6秒前
ww完成签到,获得积分10
6秒前
6秒前
lll完成签到,获得积分10
6秒前
7秒前
7秒前
aaa5a123完成签到 ,获得积分10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助100
8秒前
8秒前
9秒前
Lucas应助不是一个名字采纳,获得10
9秒前
凝安发布了新的文献求助30
9秒前
Xinzz完成签到 ,获得积分10
9秒前
10秒前
顺利静竹完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
11秒前
果果发布了新的文献求助20
11秒前
祁乐安发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885855
求助须知:如何正确求助?哪些是违规求助? 4170775
关于积分的说明 12942531
捐赠科研通 3931395
什么是DOI,文献DOI怎么找? 2157039
邀请新用户注册赠送积分活动 1175458
关于科研通互助平台的介绍 1080012