Empirical correction decomposition method (ECDM): enhancing accuracy of quantitative measurement in spectral CT

成像体模 校准 分解 计算机科学 数学 生物系统 统计 光学 物理 化学 生物 有机化学
作者
Chengmin Wang,Zhe Wang,Mohan Li,Yuedong Liu,Xiaomei Zhang,Cunfeng Wei,Wei Long
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad9a4a
摘要

Abstract Objective. Spectral CT and material decomposition methods are crucial for precise material identification and quantitative composition analysis in preclinical research and clinical diagnosis. The empirical material decomposition method is widely used for its straightforward modeling approach, independence from spectral and detector response knowledge, and operational convenience. However, this method has limited decomposition accuracy and its precision depends on the choice of calibration phantoms. Approach. To address these issues, we propose an empirical correction decomposition method (ECDM). The innovation of this method lies in its ability to conveniently estimate and correct empirical decomposition errors using a specially designed calibration phantom. First, the specially designed calibration phantom for ECDM undergoes empirical decomposition initially to establish the relationship between decomposition errors and decomposition values. Then, ECDM estimates and corrects the error of empirical decomposition values. Main results. In the phantom experiments, ECDM improves the decomposition accuracy of empirical methods, effectively reducing the different decomposition errors caused by four different sizes of calibration phantoms from a maximum of 144\% to within 25\%. In the mouse experiments, ECDM achieves accurate quantification of contrast agents in biological tissues, outperforming the other two methods. The absolute error percentages of ECDM in the decomposition results of the two standard iodine solutions are both less than 5\%. Significance. ECDM significantly improves decomposition accuracy and reduces the impact of the size of the empirical calibration phantom. Overall, our method based on spectral CT is very convenient and practical for the quantitative measurement in biomedical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枭声应助安静的月亮采纳,获得10
刚刚
2秒前
闾丘剑封发布了新的文献求助10
2秒前
YOOO完成签到,获得积分10
2秒前
3秒前
领导范儿应助7777777采纳,获得10
3秒前
5秒前
6秒前
6秒前
WCM完成签到,获得积分10
6秒前
chen完成签到,获得积分10
7秒前
一一完成签到 ,获得积分10
7秒前
oneday发布了新的文献求助50
7秒前
量子星尘发布了新的文献求助10
8秒前
明天见完成签到,获得积分10
9秒前
Ukey发布了新的文献求助10
11秒前
11秒前
北执完成签到,获得积分10
12秒前
12秒前
恐怖稽器人完成签到,获得积分10
12秒前
13秒前
13秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
Rollei应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
Rollei应助科研通管家采纳,获得10
14秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得30
14秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得30
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734932
求助须知:如何正确求助?哪些是违规求助? 5357333
关于积分的说明 15328116
捐赠科研通 4879418
什么是DOI,文献DOI怎么找? 2621901
邀请新用户注册赠送积分活动 1571096
关于科研通互助平台的介绍 1527906