Empirical correction decomposition method (ECDM): enhancing accuracy of quantitative measurement in spectral CT

成像体模 校准 分解 计算机科学 数学 生物系统 统计 光学 物理 化学 有机化学 生物
作者
Chengmin Wang,Zhe Wang,Mohan Li,Yuedong Liu,Xiaomei Zhang,Cunfeng Wei,Wei Long
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad9a4a
摘要

Abstract Objective. Spectral CT and material decomposition methods are crucial for precise material identification and quantitative composition analysis in preclinical research and clinical diagnosis. The empirical material decomposition method is widely used for its straightforward modeling approach, independence from spectral and detector response knowledge, and operational convenience. However, this method has limited decomposition accuracy and its precision depends on the choice of calibration phantoms. Approach. To address these issues, we propose an empirical correction decomposition method (ECDM). The innovation of this method lies in its ability to conveniently estimate and correct empirical decomposition errors using a specially designed calibration phantom. First, the specially designed calibration phantom for ECDM undergoes empirical decomposition initially to establish the relationship between decomposition errors and decomposition values. Then, ECDM estimates and corrects the error of empirical decomposition values. Main results. In the phantom experiments, ECDM improves the decomposition accuracy of empirical methods, effectively reducing the different decomposition errors caused by four different sizes of calibration phantoms from a maximum of 144\% to within 25\%. In the mouse experiments, ECDM achieves accurate quantification of contrast agents in biological tissues, outperforming the other two methods. The absolute error percentages of ECDM in the decomposition results of the two standard iodine solutions are both less than 5\%. Significance. ECDM significantly improves decomposition accuracy and reduces the impact of the size of the empirical calibration phantom. Overall, our method based on spectral CT is very convenient and practical for the quantitative measurement in biomedical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助鹿lu采纳,获得10
刚刚
1秒前
超帅天曼发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
charles发布了新的文献求助10
2秒前
nwds发布了新的文献求助10
2秒前
Jenkin发布了新的文献求助10
2秒前
kmmu0611发布了新的文献求助10
3秒前
g143发布了新的文献求助20
3秒前
NexusExplorer应助灵巧的坤采纳,获得10
4秒前
Hungrylunch应助陈丹丹采纳,获得150
4秒前
手握春夏完成签到,获得积分10
4秒前
QQ完成签到 ,获得积分10
5秒前
无花果应助JY采纳,获得10
5秒前
5秒前
我是老大应助昏睡的熊猫采纳,获得10
5秒前
TH发布了新的文献求助10
6秒前
标致的银河麻酱完成签到,获得积分10
6秒前
JJ完成签到,获得积分10
6秒前
共享精神应助timetttt采纳,获得10
7秒前
孙氏姑娘完成签到,获得积分10
7秒前
7秒前
燕燕于飞发布了新的文献求助10
8秒前
善学以致用应助N_wh采纳,获得10
8秒前
搜集达人应助草莓奶昔采纳,获得10
8秒前
8秒前
zstyry9998发布了新的文献求助10
8秒前
看的眼睛都瞎了完成签到,获得积分10
8秒前
sunshine完成签到,获得积分10
10秒前
戴医生完成签到,获得积分10
10秒前
风中冷风发布了新的文献求助10
11秒前
华仔应助wenjiejiang采纳,获得10
11秒前
风蓝完成签到,获得积分10
11秒前
SGQT完成签到,获得积分10
11秒前
FashionBoy应助孙氏姑娘采纳,获得10
11秒前
乐乐应助小木木壮采纳,获得10
11秒前
orixero应助愉快的土豆采纳,获得10
13秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488497
求助须知:如何正确求助?哪些是违规求助? 3076158
关于积分的说明 9143934
捐赠科研通 2768523
什么是DOI,文献DOI怎么找? 1519179
邀请新用户注册赠送积分活动 703643
科研通“疑难数据库(出版商)”最低求助积分说明 701932