Inferring Distant Relationships From Dense SNP Data Utilizing Two Genealogy Algorithms

鉴定(生物学) 推论 系谱图 计算机科学 工作流程 数据挖掘 DNA测序 SNP公司 亲属关系 遗传谱系 数据科学 计算生物学 单核苷酸多态性 生物 遗传学 人工智能 数据库 DNA 基因 基因型 人口 植物 人口学 社会学 政治学 法学
作者
Xinyi Lin,Shuang Han,Nan Zhang,Xiaohua Ling,Zhaochen Bai,Xueling Ou
出处
期刊:Electrophoresis [Wiley]
标识
DOI:10.1002/elps.202400208
摘要

ABSTRACT A highly esteemed method known as investigative genetic genealogy (IGG) has been developed to identify DNA samples from forensic crime scenes and human remains of disaster victims. With the advent of next‐generation sequencing, it is now feasible to access information on millions of SNPs typed in a single sequencing run that fulfill the requirements for kinship inference. However, challenges such as the poor quality of forensic samples, the high cost associated with sequencing technology, and privacy concerns regarding large‐scale genetic databases remain unresolved in this field. In the present study, we validated the identification of relationships up to the seventh degree using two genealogy algorithms (IBIS and KING) under various parameter settings. This was accomplished through whole genome sequencing data derived from two southern Chinese Han pedigrees during an initial phase, while also exploring workflows adapted for low‐quality samples. To achieve this objective, low‐coverage whole genome sequencing data were downsampled from high‐coverage original datasets; additionally, mimic SNP array data—containing less information but offering greater accessibility—were prepared as reference samples. Through a series of experimental analyses, we not only validate the applicability of selected processing procedures and inference tools for low‐coverage samples but also proposed that a meticulously crafted site filtering strategy can significantly improve the accuracy of kinship identification. This acknowledges the necessity for further systematic evidence in future research endeavors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大胆盼兰发布了新的文献求助10
刚刚
刚刚
1秒前
常常发布了新的文献求助10
1秒前
1秒前
2秒前
Summer发布了新的文献求助30
2秒前
2秒前
Han发布了新的文献求助10
2秒前
星辰大海应助hehe采纳,获得10
2秒前
3秒前
任性冰枫完成签到,获得积分20
3秒前
3秒前
华仔应助Dr大壮采纳,获得10
3秒前
繁荣的秋发布了新的文献求助10
3秒前
辰月贰拾发布了新的文献求助10
4秒前
陈晚拧发布了新的文献求助10
4秒前
烟花应助guanhao采纳,获得10
5秒前
5秒前
6秒前
活力芝麻发布了新的文献求助10
6秒前
紧张的一一完成签到,获得积分20
7秒前
ZHIXIANGWENG发布了新的文献求助10
8秒前
任性冰枫发布了新的文献求助10
8秒前
NexusExplorer应助顾化蛹采纳,获得10
8秒前
linandun发布了新的文献求助10
8秒前
9秒前
Lds发布了新的文献求助10
9秒前
深情安青应助繁荣的秋采纳,获得10
10秒前
polarbear完成签到 ,获得积分10
11秒前
11秒前
11秒前
iii发布了新的文献求助10
11秒前
SSSSSS发布了新的文献求助10
12秒前
12秒前
dew发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561145
求助须知:如何正确求助?哪些是违规求助? 3134912
关于积分的说明 9410275
捐赠科研通 2835309
什么是DOI,文献DOI怎么找? 1558420
邀请新用户注册赠送积分活动 728160
科研通“疑难数据库(出版商)”最低求助积分说明 716722